Flowise/packages/components/nodes/vectorstores/Supabase/Supabase.ts

298 lines
12 KiB
TypeScript

import { flatten } from 'lodash'
import { v4 as uuidv4 } from 'uuid'
import { createClient } from '@supabase/supabase-js'
import { Document } from '@langchain/core/documents'
import { Embeddings } from '@langchain/core/embeddings'
import { SupabaseVectorStore, SupabaseLibArgs } from '@langchain/community/vectorstores/supabase'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
import { index } from '../../../src/indexing'
import { FilterParser } from './filterParser'
class Supabase_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Supabase'
this.name = 'supabase'
this.version = 4.0
this.type = 'Supabase'
this.icon = 'supabase.svg'
this.category = 'Vector Stores'
this.description = 'Upsert embedded data and perform similarity or mmr search upon query using Supabase via pgvector extension'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['supabaseApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Record Manager',
name: 'recordManager',
type: 'RecordManager',
description: 'Keep track of the record to prevent duplication',
optional: true
},
{
label: 'Supabase Project URL',
name: 'supabaseProjUrl',
type: 'string'
},
{
label: 'Table Name',
name: 'tableName',
type: 'string'
},
{
label: 'Query Name',
name: 'queryName',
type: 'string'
},
{
label: 'Supabase Metadata Filter',
name: 'supabaseMetadataFilter',
type: 'json',
optional: true,
additionalParams: true,
acceptVariable: true
},
{
label: 'Supabase RPC Filter',
name: 'supabaseRPCFilter',
type: 'string',
rows: 4,
placeholder: `filter("metadata->a::int", "gt", 5)
.filter("metadata->c::int", "gt", 7)
.filter("metadata->>stuff", "eq", "right");`,
description:
'Query builder-style filtering. If this is set, will override the metadata filter. Refer <a href="https://js.langchain.com/v0.1/docs/integrations/vectorstores/supabase/#metadata-query-builder-filtering" target="_blank">here</a> for more information',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
addMMRInputParams(this.inputs)
this.outputs = [
{
label: 'Supabase Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Supabase Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(SupabaseVectorStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const supabaseProjUrl = nodeData.inputs?.supabaseProjUrl as string
const tableName = nodeData.inputs?.tableName as string
const queryName = nodeData.inputs?.queryName as string
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const recordManager = nodeData.inputs?.recordManager
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const supabaseApiKey = getCredentialParam('supabaseApiKey', credentialData, nodeData)
const client = createClient(supabaseProjUrl, supabaseApiKey)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
if (recordManager) {
const vectorStore = await SupabaseUpsertVectorStore.fromExistingIndex(embeddings, {
client,
tableName: tableName,
queryName: queryName
})
await recordManager.createSchema()
const res = await index({
docsSource: finalDocs,
recordManager,
vectorStore,
options: {
cleanup: recordManager?.cleanup,
sourceIdKey: recordManager?.sourceIdKey ?? 'source',
vectorStoreName: tableName + '_' + queryName
}
})
return res
} else {
await SupabaseUpsertVectorStore.fromDocuments(finalDocs, embeddings, {
client,
tableName: tableName,
queryName: queryName
})
return { numAdded: finalDocs.length, addedDocs: finalDocs }
}
} catch (e) {
throw new Error(e)
}
},
async delete(nodeData: INodeData, ids: string[], options: ICommonObject): Promise<void> {
const supabaseProjUrl = nodeData.inputs?.supabaseProjUrl as string
const tableName = nodeData.inputs?.tableName as string
const queryName = nodeData.inputs?.queryName as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const recordManager = nodeData.inputs?.recordManager
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const supabaseApiKey = getCredentialParam('supabaseApiKey', credentialData, nodeData)
const client = createClient(supabaseProjUrl, supabaseApiKey)
const supabaseStore = new SupabaseVectorStore(embeddings, {
client,
tableName: tableName,
queryName: queryName
})
try {
if (recordManager) {
const vectorStoreName = tableName + '_' + queryName
await recordManager.createSchema()
;(recordManager as any).namespace = (recordManager as any).namespace + '_' + vectorStoreName
const keys: string[] = await recordManager.listKeys({})
await supabaseStore.delete({ ids: keys })
await recordManager.deleteKeys(keys)
} else {
await supabaseStore.delete({ ids })
}
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const supabaseProjUrl = nodeData.inputs?.supabaseProjUrl as string
const tableName = nodeData.inputs?.tableName as string
const queryName = nodeData.inputs?.queryName as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const supabaseMetadataFilter = nodeData.inputs?.supabaseMetadataFilter
const supabaseRPCFilter = nodeData.inputs?.supabaseRPCFilter
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const supabaseApiKey = getCredentialParam('supabaseApiKey', credentialData, nodeData)
const client = createClient(supabaseProjUrl, supabaseApiKey)
const obj: SupabaseLibArgs = {
client,
tableName,
queryName
}
if (supabaseMetadataFilter) {
const metadatafilter = typeof supabaseMetadataFilter === 'object' ? supabaseMetadataFilter : JSON.parse(supabaseMetadataFilter)
obj.filter = metadatafilter
}
if (supabaseRPCFilter) {
obj.filter = FilterParser.parseFilterString(supabaseRPCFilter)
}
const vectorStore = await SupabaseVectorStore.fromExistingIndex(embeddings, obj)
return resolveVectorStoreOrRetriever(nodeData, vectorStore, obj.filter)
}
}
class SupabaseUpsertVectorStore extends SupabaseVectorStore {
async addVectors(vectors: number[][], documents: Document[], options?: { ids?: string[] | number[] }): Promise<string[]> {
if (vectors.length === 0) {
return []
}
const rows = vectors.map((embedding, idx) => ({
content: documents[idx].pageContent,
embedding,
metadata: documents[idx].metadata
}))
let returnedIds: string[] = []
for (let i = 0; i < rows.length; i += this.upsertBatchSize) {
const chunk = rows.slice(i, i + this.upsertBatchSize).map((row, j) => {
if (options?.ids) {
return { id: options.ids[i + j], ...row }
}
return row
})
let res = await this.client.from(this.tableName).upsert(chunk).select()
if (res.error) {
// If the error is due to null value in column "id", we will generate a new id for the row
if (res.error.message.includes(`null value in column "id"`)) {
const chunk = rows.slice(i, i + this.upsertBatchSize).map((row, y) => {
if (options?.ids) {
return { id: options.ids[i + y], ...row }
}
return { id: uuidv4(), ...row }
})
res = await this.client.from(this.tableName).upsert(chunk).select()
if (res.error) {
throw new Error(`Error inserting: ${res.error.message} ${res.status} ${res.statusText}`)
}
} else {
throw new Error(`Error inserting: ${res.error.message} ${res.status} ${res.statusText}`)
}
}
if (res.data) {
returnedIds = returnedIds.concat(res.data.map((row) => row.id))
}
}
return returnedIds
}
}
module.exports = { nodeClass: Supabase_VectorStores }