162 lines
5.8 KiB
TypeScript
162 lines
5.8 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { ZepClient } from '@getzep/zep-cloud'
|
|
import { IZepConfig, ZepVectorStore } from '@getzep/zep-cloud/langchain'
|
|
import { Document } from 'langchain/document'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
|
|
import { FakeEmbeddings } from 'langchain/embeddings/fake'
|
|
import { Embeddings } from '@langchain/core/embeddings'
|
|
|
|
class Zep_CloudVectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Zep Collection - Cloud'
|
|
this.name = 'zepCloud'
|
|
this.version = 2.0
|
|
this.type = 'Zep'
|
|
this.icon = 'zep.svg'
|
|
this.category = 'Vector Stores'
|
|
this.description =
|
|
'Upsert embedded data and perform similarity or mmr search upon query using Zep, a fast and scalable building block for LLM apps'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
optional: false,
|
|
description: 'Configure JWT authentication on your Zep instance (Optional)',
|
|
credentialNames: ['zepMemoryApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Zep Collection',
|
|
name: 'zepCollection',
|
|
type: 'string',
|
|
placeholder: 'my-first-collection'
|
|
},
|
|
{
|
|
label: 'Zep Metadata Filter',
|
|
name: 'zepMetadataFilter',
|
|
type: 'json',
|
|
optional: true,
|
|
additionalParams: true,
|
|
acceptVariable: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
addMMRInputParams(this.inputs)
|
|
this.outputs = [
|
|
{
|
|
label: 'Zep Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Zep Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(ZepVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
|
|
const zepCollection = nodeData.inputs?.zepCollection as string
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
const client = new ZepClient({
|
|
apiKey: apiKey
|
|
})
|
|
const zepConfig = {
|
|
apiKey: apiKey,
|
|
collectionName: zepCollection,
|
|
client
|
|
}
|
|
try {
|
|
await ZepVectorStore.fromDocuments(finalDocs, new FakeEmbeddings(), zepConfig)
|
|
return { numAdded: finalDocs.length, addedDocs: finalDocs }
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const zepCollection = nodeData.inputs?.zepCollection as string
|
|
const zepMetadataFilter = nodeData.inputs?.zepMetadataFilter
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
|
|
const zepConfig: IZepConfig & Partial<ZepFilter> = {
|
|
apiKey,
|
|
collectionName: zepCollection
|
|
}
|
|
if (zepMetadataFilter) {
|
|
zepConfig.filter = typeof zepMetadataFilter === 'object' ? zepMetadataFilter : JSON.parse(zepMetadataFilter)
|
|
}
|
|
zepConfig.client = new ZepClient({
|
|
apiKey: apiKey
|
|
})
|
|
const vectorStore = await ZepExistingVS.init(zepConfig)
|
|
return resolveVectorStoreOrRetriever(nodeData, vectorStore, zepConfig.filter)
|
|
}
|
|
}
|
|
|
|
interface ZepFilter {
|
|
filter: Record<string, any>
|
|
}
|
|
|
|
class ZepExistingVS extends ZepVectorStore {
|
|
filter?: Record<string, any>
|
|
args?: IZepConfig & Partial<ZepFilter>
|
|
|
|
constructor(embeddings: Embeddings, args: IZepConfig & Partial<ZepFilter>) {
|
|
super(embeddings, args)
|
|
this.filter = args.filter
|
|
this.args = args
|
|
}
|
|
|
|
static async fromExistingIndex(embeddings: Embeddings, dbConfig: IZepConfig & Partial<ZepFilter>): Promise<ZepVectorStore> {
|
|
return new this(embeddings, dbConfig)
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: Zep_CloudVectorStores }
|