Flowise/packages/components/nodes/chains/VisionChain/OpenAIVisionChain.ts

276 lines
10 KiB
TypeScript

import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam, handleEscapeCharacters } from '../../../src/utils'
import { OpenAIVisionChainInput, VLLMChain } from './VLLMChain'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
class OpenAIVisionChain_Chains implements INode {
label: string
name: string
version: number
type: string
icon: string
badge: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
outputs: INodeOutputsValue[]
credential: INodeParams
constructor() {
this.label = 'Open AI Vision Chain'
this.name = 'openAIVisionChain'
this.version = 1.0
this.type = 'OpenAIVisionChain'
this.icon = 'chain.svg'
this.category = 'Chains'
this.badge = 'BETA'
this.description = 'Chain to run queries against OpenAI (GPT-4) Vision .'
this.baseClasses = [this.type, ...getBaseClasses(VLLMChain)]
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['openAIApi']
}
this.inputs = [
{
label: 'Model Name',
name: 'modelName',
type: 'options',
options: [
{
label: 'gpt-4-vision-preview',
name: 'gpt-4-vision-preview'
}
],
default: 'gpt-4-vision-preview',
optional: true
},
{
label: 'Prompt',
name: 'prompt',
type: 'BasePromptTemplate',
optional: true
},
{
label: 'Image Resolution',
description: 'This parameter controls the resolution in which the model views the image.',
name: 'imageResolution',
type: 'options',
options: [
{
label: 'Low',
name: 'low'
},
{
label: 'High',
name: 'high'
}
],
default: 'low',
optional: false,
additionalParams: true
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
step: 0.1,
default: 0.9,
optional: true,
additionalParams: true
},
{
label: 'Top Probability',
name: 'topP',
type: 'number',
step: 0.1,
optional: true,
additionalParams: true
},
{
label: 'Max Tokens',
name: 'maxTokens',
type: 'number',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Chain Name',
name: 'chainName',
type: 'string',
placeholder: 'Name Your Chain',
optional: true
},
{
label: 'Accepted Upload Types',
name: 'allowedUploadTypes',
type: 'string',
default: 'image/gif;image/jpeg;image/png;image/webp',
hidden: true
},
{
label: 'Maximum Upload Size (MB)',
name: 'maxUploadSize',
type: 'number',
default: '5',
hidden: true
}
]
this.outputs = [
{
label: 'Open AI Vision Chain',
name: 'openAIVisionChain',
baseClasses: [this.type, ...getBaseClasses(VLLMChain)]
},
{
label: 'Output Prediction',
name: 'outputPrediction',
baseClasses: ['string', 'json']
}
]
}
async init(nodeData: INodeData, input: string, options: ICommonObject): Promise<any> {
const prompt = nodeData.inputs?.prompt
const output = nodeData.outputs?.output as string
const imageResolution = nodeData.inputs?.imageResolution
const promptValues = prompt.promptValues as ICommonObject
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const openAIApiKey = getCredentialParam('openAIApiKey', credentialData, nodeData)
const temperature = nodeData.inputs?.temperature as string
const modelName = nodeData.inputs?.modelName as string
const maxTokens = nodeData.inputs?.maxTokens as string
const topP = nodeData.inputs?.topP as string
const fields: OpenAIVisionChainInput = {
openAIApiKey: openAIApiKey,
imageResolution: imageResolution,
verbose: process.env.DEBUG === 'true',
imageUrls: options.uploads,
modelName: modelName
}
if (temperature) fields.temperature = parseFloat(temperature)
if (maxTokens) fields.maxTokens = parseInt(maxTokens, 10)
if (topP) fields.topP = parseFloat(topP)
if (output === this.name) {
const chain = new VLLMChain({
...fields,
prompt: prompt
})
return chain
} else if (output === 'outputPrediction') {
const chain = new VLLMChain({
...fields
})
const inputVariables: string[] = prompt.inputVariables as string[] // ["product"]
const res = await runPrediction(inputVariables, chain, input, promptValues, options, nodeData)
// eslint-disable-next-line no-console
console.log('\x1b[92m\x1b[1m\n*****OUTPUT PREDICTION*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
console.log(res)
/**
* Apply string transformation to convert special chars:
* FROM: hello i am ben\n\n\thow are you?
* TO: hello i am benFLOWISE_NEWLINEFLOWISE_NEWLINEFLOWISE_TABhow are you?
*/
return handleEscapeCharacters(res, false)
}
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | object> {
const prompt = nodeData.inputs?.prompt
const inputVariables: string[] = prompt.inputVariables as string[] // ["product"]
const chain = nodeData.instance as VLLMChain
let promptValues: ICommonObject | undefined = nodeData.inputs?.prompt.promptValues as ICommonObject
const res = await runPrediction(inputVariables, chain, input, promptValues, options, nodeData)
// eslint-disable-next-line no-console
console.log('\x1b[93m\x1b[1m\n*****FINAL RESULT*****\n\x1b[0m\x1b[0m')
// eslint-disable-next-line no-console
console.log(res)
return res
}
}
const runPrediction = async (
inputVariables: string[],
chain: VLLMChain,
input: string,
promptValuesRaw: ICommonObject | undefined,
options: ICommonObject,
nodeData: INodeData
) => {
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
const isStreaming = options.socketIO && options.socketIOClientId
const socketIO = isStreaming ? options.socketIO : undefined
const socketIOClientId = isStreaming ? options.socketIOClientId : ''
/**
* Apply string transformation to reverse converted special chars:
* FROM: { "value": "hello i am benFLOWISE_NEWLINEFLOWISE_NEWLINEFLOWISE_TABhow are you?" }
* TO: { "value": "hello i am ben\n\n\thow are you?" }
*/
const promptValues = handleEscapeCharacters(promptValuesRaw, true)
if (options?.uploads) {
chain.imageUrls = options.uploads
}
if (promptValues && inputVariables.length > 0) {
let seen: string[] = []
for (const variable of inputVariables) {
seen.push(variable)
if (promptValues[variable]) {
chain.inputKey = variable
seen.pop()
}
}
if (seen.length === 0) {
// All inputVariables have fixed values specified
const options = { ...promptValues }
if (isStreaming) {
const handler = new CustomChainHandler(socketIO, socketIOClientId)
const res = await chain.call(options, [loggerHandler, handler, ...callbacks])
return formatResponse(res?.text)
} else {
const res = await chain.call(options, [loggerHandler, ...callbacks])
return formatResponse(res?.text)
}
} else if (seen.length === 1) {
// If one inputVariable is not specify, use input (user's question) as value
const lastValue = seen.pop()
if (!lastValue) throw new Error('Please provide Prompt Values')
chain.inputKey = lastValue as string
const options = {
...promptValues,
[lastValue]: input
}
if (isStreaming) {
const handler = new CustomChainHandler(socketIO, socketIOClientId)
const res = await chain.call(options, [loggerHandler, handler, ...callbacks])
return formatResponse(res?.text)
} else {
const res = await chain.call(options, [loggerHandler, ...callbacks])
return formatResponse(res?.text)
}
} else {
throw new Error(`Please provide Prompt Values for: ${seen.join(', ')}`)
}
} else {
if (isStreaming) {
const handler = new CustomChainHandler(socketIO, socketIOClientId)
const res = await chain.run(input, [loggerHandler, handler, ...callbacks])
return formatResponse(res)
} else {
const res = await chain.run(input, [loggerHandler, ...callbacks])
return formatResponse(res)
}
}
}
module.exports = { nodeClass: OpenAIVisionChain_Chains }