Flowise/packages/components/nodes/agents/OpenAIFunctionAgent/OpenAIFunctionAgent.ts

385 lines
15 KiB
TypeScript

import { FlowiseMemory, ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
import { AgentExecutor as LCAgentExecutor, AgentExecutorInput } from 'langchain/agents'
import { ChainValues, AgentStep, AgentFinish, AgentAction, BaseMessage, FunctionMessage, AIMessage } from 'langchain/schema'
import { OutputParserException } from 'langchain/schema/output_parser'
import { CallbackManagerForChainRun } from 'langchain/callbacks'
import { formatToOpenAIFunction } from 'langchain/tools'
import { ToolInputParsingException, Tool } from '@langchain/core/tools'
import { getBaseClasses } from '../../../src/utils'
import { flatten } from 'lodash'
import { RunnableSequence } from 'langchain/schema/runnable'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { ChatPromptTemplate, MessagesPlaceholder } from 'langchain/prompts'
import { ChatOpenAI } from 'langchain/chat_models/openai'
import { OpenAIFunctionsAgentOutputParser } from 'langchain/agents/openai/output_parser'
class OpenAIFunctionAgent_Agents implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
sessionId?: string
constructor(fields: { sessionId?: string }) {
this.label = 'OpenAI Function Agent'
this.name = 'openAIFunctionAgent'
this.version = 3.0
this.type = 'AgentExecutor'
this.category = 'Agents'
this.icon = 'function.svg'
this.description = `An agent that uses Function Calling to pick the tool and args to call`
this.baseClasses = [this.type, ...getBaseClasses(LCAgentExecutor)]
this.inputs = [
{
label: 'Allowed Tools',
name: 'tools',
type: 'Tool',
list: true
},
{
label: 'Memory',
name: 'memory',
type: 'BaseChatMemory'
},
{
label: 'OpenAI/Azure Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'System Message',
name: 'systemMessage',
type: 'string',
rows: 4,
optional: true,
additionalParams: true
}
]
this.sessionId = fields?.sessionId
}
async init(nodeData: INodeData): Promise<any> {
const memory = nodeData.inputs?.memory as FlowiseMemory
const executor = prepareAgent(nodeData, this.sessionId)
if (memory) executor.memory = memory
return executor
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string> {
const memory = nodeData.inputs?.memory as FlowiseMemory
const executor = prepareAgent(nodeData, this.sessionId)
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
let res: ChainValues = {}
if (options.socketIO && options.socketIOClientId) {
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
} else {
res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
}
await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: res?.output,
type: 'apiMessage'
}
],
this.sessionId
)
return res?.output
}
}
const formatAgentSteps = (steps: AgentStep[]): BaseMessage[] =>
steps.flatMap(({ action, observation }) => {
if ('messageLog' in action && action.messageLog !== undefined) {
const log = action.messageLog as BaseMessage[]
return log.concat(new FunctionMessage(observation, action.tool))
} else {
return [new AIMessage(action.log)]
}
})
const prepareAgent = (nodeData: INodeData, sessionId?: string) => {
const model = nodeData.inputs?.model as ChatOpenAI
const memory = nodeData.inputs?.memory as FlowiseMemory
const systemMessage = nodeData.inputs?.systemMessage as string
let tools = nodeData.inputs?.tools
tools = flatten(tools)
const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history'
const inputKey = memory.inputKey ? memory.inputKey : 'input'
const prompt = ChatPromptTemplate.fromMessages([
['ai', systemMessage ? systemMessage : `You are a helpful AI assistant.`],
new MessagesPlaceholder(memoryKey),
['human', `{${inputKey}}`],
new MessagesPlaceholder('agent_scratchpad')
])
const modelWithFunctions = model.bind({
functions: [...tools.map((tool: any) => formatToOpenAIFunction(tool))]
})
const runnableAgent = RunnableSequence.from([
{
[inputKey]: (i: { input: string; steps: AgentStep[] }) => i.input,
agent_scratchpad: (i: { input: string; steps: AgentStep[] }) => formatAgentSteps(i.steps),
[memoryKey]: async (_: { input: string; steps: AgentStep[] }) => {
const messages = (await memory.getChatMessages(sessionId, true)) as BaseMessage[]
return messages ?? []
}
},
prompt,
modelWithFunctions,
new OpenAIFunctionsAgentOutputParser()
])
const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
tools,
sessionId
})
return executor
}
type AgentExecutorOutput = ChainValues
class AgentExecutor extends LCAgentExecutor {
sessionId?: string
static fromAgentAndTools(fields: AgentExecutorInput & { sessionId?: string }): AgentExecutor {
const newInstance = new AgentExecutor(fields)
if (fields.sessionId) newInstance.sessionId = fields.sessionId
return newInstance
}
shouldContinueIteration(iterations: number): boolean {
return this.maxIterations === undefined || iterations < this.maxIterations
}
async _call(inputs: ChainValues, runManager?: CallbackManagerForChainRun): Promise<AgentExecutorOutput> {
const toolsByName = Object.fromEntries(this.tools.map((t) => [t.name.toLowerCase(), t]))
const steps: AgentStep[] = []
let iterations = 0
const getOutput = async (finishStep: AgentFinish): Promise<AgentExecutorOutput> => {
const { returnValues } = finishStep
const additional = await this.agent.prepareForOutput(returnValues, steps)
if (this.returnIntermediateSteps) {
return { ...returnValues, intermediateSteps: steps, ...additional }
}
await runManager?.handleAgentEnd(finishStep)
return { ...returnValues, ...additional }
}
while (this.shouldContinueIteration(iterations)) {
let output
try {
output = await this.agent.plan(steps, inputs, runManager?.getChild())
} catch (e) {
if (e instanceof OutputParserException) {
let observation
let text = e.message
if (this.handleParsingErrors === true) {
if (e.sendToLLM) {
observation = e.observation
text = e.llmOutput ?? ''
} else {
observation = 'Invalid or incomplete response'
}
} else if (typeof this.handleParsingErrors === 'string') {
observation = this.handleParsingErrors
} else if (typeof this.handleParsingErrors === 'function') {
observation = this.handleParsingErrors(e)
} else {
throw e
}
output = {
tool: '_Exception',
toolInput: observation,
log: text
} as AgentAction
} else {
throw e
}
}
// Check if the agent has finished
if ('returnValues' in output) {
return getOutput(output)
}
let actions: AgentAction[]
if (Array.isArray(output)) {
actions = output as AgentAction[]
} else {
actions = [output as AgentAction]
}
const newSteps = await Promise.all(
actions.map(async (action) => {
await runManager?.handleAgentAction(action)
const tool = action.tool === '_Exception' ? new ExceptionTool() : toolsByName[action.tool?.toLowerCase()]
let observation
try {
// here we need to override Tool call method to include sessionId as parameter
observation = tool
? // @ts-ignore
await tool.call(action.toolInput, runManager?.getChild(), undefined, this.sessionId)
: `${action.tool} is not a valid tool, try another one.`
} catch (e) {
if (e instanceof ToolInputParsingException) {
if (this.handleParsingErrors === true) {
observation = 'Invalid or incomplete tool input. Please try again.'
} else if (typeof this.handleParsingErrors === 'string') {
observation = this.handleParsingErrors
} else if (typeof this.handleParsingErrors === 'function') {
observation = this.handleParsingErrors(e)
} else {
throw e
}
observation = await new ExceptionTool().call(observation, runManager?.getChild())
return { action, observation: observation ?? '' }
}
}
return { action, observation: observation ?? '' }
})
)
steps.push(...newSteps)
const lastStep = steps[steps.length - 1]
const lastTool = toolsByName[lastStep.action.tool?.toLowerCase()]
if (lastTool?.returnDirect) {
return getOutput({
returnValues: { [this.agent.returnValues[0]]: lastStep.observation },
log: ''
})
}
iterations += 1
}
const finish = await this.agent.returnStoppedResponse(this.earlyStoppingMethod, steps, inputs)
return getOutput(finish)
}
async _takeNextStep(
nameToolMap: Record<string, Tool>,
inputs: ChainValues,
intermediateSteps: AgentStep[],
runManager?: CallbackManagerForChainRun
): Promise<AgentFinish | AgentStep[]> {
let output
try {
output = await this.agent.plan(intermediateSteps, inputs, runManager?.getChild())
} catch (e) {
if (e instanceof OutputParserException) {
let observation
let text = e.message
if (this.handleParsingErrors === true) {
if (e.sendToLLM) {
observation = e.observation
text = e.llmOutput ?? ''
} else {
observation = 'Invalid or incomplete response'
}
} else if (typeof this.handleParsingErrors === 'string') {
observation = this.handleParsingErrors
} else if (typeof this.handleParsingErrors === 'function') {
observation = this.handleParsingErrors(e)
} else {
throw e
}
output = {
tool: '_Exception',
toolInput: observation,
log: text
} as AgentAction
} else {
throw e
}
}
if ('returnValues' in output) {
return output
}
let actions: AgentAction[]
if (Array.isArray(output)) {
actions = output as AgentAction[]
} else {
actions = [output as AgentAction]
}
const result: AgentStep[] = []
for (const agentAction of actions) {
let observation = ''
if (runManager) {
await runManager?.handleAgentAction(agentAction)
}
if (agentAction.tool in nameToolMap) {
const tool = nameToolMap[agentAction.tool]
try {
// here we need to override Tool call method to include sessionId as parameter
// @ts-ignore
observation = await tool.call(agentAction.toolInput, runManager?.getChild(), undefined, this.sessionId)
} catch (e) {
if (e instanceof ToolInputParsingException) {
if (this.handleParsingErrors === true) {
observation = 'Invalid or incomplete tool input. Please try again.'
} else if (typeof this.handleParsingErrors === 'string') {
observation = this.handleParsingErrors
} else if (typeof this.handleParsingErrors === 'function') {
observation = this.handleParsingErrors(e)
} else {
throw e
}
observation = await new ExceptionTool().call(observation, runManager?.getChild())
}
}
} else {
observation = `${agentAction.tool} is not a valid tool, try another available tool: ${Object.keys(nameToolMap).join(', ')}`
}
result.push({
action: agentAction,
observation
})
}
return result
}
}
class ExceptionTool extends Tool {
name = '_Exception'
description = 'Exception tool'
async _call(query: string) {
return query
}
}
module.exports = { nodeClass: OpenAIFunctionAgent_Agents }