Flowise/packages/server/marketplaces/agentflowsv2/Financial Research Agent.json

1504 lines
67 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"description": "A financial research agent that takes in a query, plan the steps, search the web, and return a detailed report",
"usecases": ["Finance & Accounting"],
"nodes": [
{
"id": "startAgentflow_0",
"type": "agentFlow",
"position": {
"x": -234.94624728418063,
"y": 84.92919739582129
},
"data": {
"id": "startAgentflow_0",
"label": "Start",
"version": 1,
"name": "startAgentflow",
"type": "Start",
"color": "#7EE787",
"hideInput": true,
"baseClasses": ["Start"],
"category": "Agent Flows",
"description": "Starting point of the agentflow",
"inputParams": [
{
"label": "Input Type",
"name": "startInputType",
"type": "options",
"options": [
{
"label": "Chat Input",
"name": "chatInput",
"description": "Start the conversation with chat input"
},
{
"label": "Form Input",
"name": "formInput",
"description": "Start the workflow with form inputs"
}
],
"default": "chatInput",
"id": "startAgentflow_0-input-startInputType-options",
"display": true
},
{
"label": "Form Title",
"name": "formTitle",
"type": "string",
"placeholder": "Please Fill Out The Form",
"show": {
"startInputType": "formInput"
},
"id": "startAgentflow_0-input-formTitle-string",
"display": true
},
{
"label": "Form Description",
"name": "formDescription",
"type": "string",
"placeholder": "Complete all fields below to continue",
"show": {
"startInputType": "formInput"
},
"id": "startAgentflow_0-input-formDescription-string",
"display": true
},
{
"label": "Form Input Types",
"name": "formInputTypes",
"description": "Specify the type of form input",
"type": "array",
"show": {
"startInputType": "formInput"
},
"array": [
{
"label": "Type",
"name": "type",
"type": "options",
"options": [
{
"label": "String",
"name": "string"
},
{
"label": "Number",
"name": "number"
},
{
"label": "Boolean",
"name": "boolean"
},
{
"label": "Options",
"name": "options"
}
],
"default": "string"
},
{
"label": "Label",
"name": "label",
"type": "string",
"placeholder": "Label for the input"
},
{
"label": "Variable Name",
"name": "name",
"type": "string",
"placeholder": "Variable name for the input (must be camel case)",
"description": "Variable name must be camel case. For example: firstName, lastName, etc."
},
{
"label": "Add Options",
"name": "addOptions",
"type": "array",
"show": {
"formInputTypes[$index].type": "options"
},
"array": [
{
"label": "Option",
"name": "option",
"type": "string"
}
]
}
],
"id": "startAgentflow_0-input-formInputTypes-array",
"display": true
},
{
"label": "Ephemeral Memory",
"name": "startEphemeralMemory",
"type": "boolean",
"description": "Start fresh for every execution without past chat history",
"optional": true
},
{
"label": "Flow State",
"name": "startState",
"description": "Runtime state during the execution of the workflow",
"type": "array",
"optional": true,
"array": [
{
"label": "Key",
"name": "key",
"type": "string",
"placeholder": "Foo"
},
{
"label": "Value",
"name": "value",
"type": "string",
"placeholder": "Bar"
}
],
"id": "startAgentflow_0-input-startState-array",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"startInputType": "formInput",
"formTitle": "Finanical Research",
"formDescription": "A financial research agent that takes in a query, and return a detailed report",
"formInputTypes": [
{
"type": "string",
"label": "Query",
"name": "query",
"addOptions": ""
}
],
"startState": [
{
"key": "search_key_reason",
"value": ""
}
]
},
"outputAnchors": [
{
"id": "startAgentflow_0-output-startAgentflow",
"label": "Start",
"name": "startAgentflow"
}
],
"outputs": {},
"selected": false
},
"width": 101,
"height": 65,
"selected": false,
"positionAbsolute": {
"x": -234.94624728418063,
"y": 84.92919739582129
},
"dragging": false
},
{
"id": "llmAgentflow_0",
"position": {
"x": -92.42002168895628,
"y": 81.69973969492588
},
"data": {
"id": "llmAgentflow_0",
"label": "Planner",
"version": 1,
"name": "llmAgentflow",
"type": "LLM",
"color": "#64B5F6",
"baseClasses": ["LLM"],
"category": "Agent Flows",
"description": "Large language models to analyze user-provided inputs and generate responses",
"inputParams": [
{
"label": "Model",
"name": "llmModel",
"type": "asyncOptions",
"loadMethod": "listModels",
"loadConfig": true,
"id": "llmAgentflow_0-input-llmModel-asyncOptions",
"display": true
},
{
"label": "Messages",
"name": "llmMessages",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Role",
"name": "role",
"type": "options",
"options": [
{
"label": "System",
"name": "system"
},
{
"label": "Assistant",
"name": "assistant"
},
{
"label": "Developer",
"name": "developer"
},
{
"label": "User",
"name": "user"
}
]
},
{
"label": "Content",
"name": "content",
"type": "string",
"acceptVariable": true,
"generateInstruction": true,
"rows": 4
}
],
"id": "llmAgentflow_0-input-llmMessages-array",
"display": true
},
{
"label": "Enable Memory",
"name": "llmEnableMemory",
"type": "boolean",
"description": "Enable memory for the conversation thread",
"default": true,
"optional": true,
"id": "llmAgentflow_0-input-llmEnableMemory-boolean",
"display": true
},
{
"label": "Memory Type",
"name": "llmMemoryType",
"type": "options",
"options": [
{
"label": "All Messages",
"name": "allMessages",
"description": "Retrieve all messages from the conversation"
},
{
"label": "Window Size",
"name": "windowSize",
"description": "Uses a fixed window size to surface the last N messages"
},
{
"label": "Conversation Summary",
"name": "conversationSummary",
"description": "Summarizes the whole conversation"
},
{
"label": "Conversation Summary Buffer",
"name": "conversationSummaryBuffer",
"description": "Summarize conversations once token limit is reached. Default to 2000"
}
],
"optional": true,
"default": "allMessages",
"show": {
"llmEnableMemory": true
},
"id": "llmAgentflow_0-input-llmMemoryType-options",
"display": true
},
{
"label": "Window Size",
"name": "llmMemoryWindowSize",
"type": "number",
"default": "20",
"description": "Uses a fixed window size to surface the last N messages",
"show": {
"llmMemoryType": "windowSize"
},
"id": "llmAgentflow_0-input-llmMemoryWindowSize-number",
"display": false
},
{
"label": "Max Token Limit",
"name": "llmMemoryMaxTokenLimit",
"type": "number",
"default": "2000",
"description": "Summarize conversations once token limit is reached. Default to 2000",
"show": {
"llmMemoryType": "conversationSummaryBuffer"
},
"id": "llmAgentflow_0-input-llmMemoryMaxTokenLimit-number",
"display": false
},
{
"label": "Input Message",
"name": "llmUserMessage",
"type": "string",
"description": "Add an input message as user message at the end of the conversation",
"rows": 4,
"optional": true,
"acceptVariable": true,
"show": {
"llmEnableMemory": true
},
"id": "llmAgentflow_0-input-llmUserMessage-string",
"display": true
},
{
"label": "Return Response As",
"name": "llmReturnResponseAs",
"type": "options",
"options": [
{
"label": "User Message",
"name": "userMessage"
},
{
"label": "Assistant Message",
"name": "assistantMessage"
}
],
"default": "userMessage",
"id": "llmAgentflow_0-input-llmReturnResponseAs-options",
"display": true
},
{
"label": "JSON Structured Output",
"name": "llmStructuredOutput",
"description": "Instruct the LLM to give output in a JSON structured schema",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Key",
"name": "key",
"type": "string"
},
{
"label": "Type",
"name": "type",
"type": "options",
"options": [
{
"label": "String",
"name": "string"
},
{
"label": "String Array",
"name": "stringArray"
},
{
"label": "Number",
"name": "number"
},
{
"label": "Boolean",
"name": "boolean"
},
{
"label": "Enum",
"name": "enum"
},
{
"label": "JSON Array",
"name": "jsonArray"
}
]
},
{
"label": "Enum Values",
"name": "enumValues",
"type": "string",
"placeholder": "value1, value2, value3",
"description": "Enum values. Separated by comma",
"optional": true,
"show": {
"llmStructuredOutput[$index].type": "enum"
}
},
{
"label": "JSON Schema",
"name": "jsonSchema",
"type": "code",
"placeholder": "{\n \"answer\": {\n \"type\": \"string\",\n \"description\": \"Value of the answer\"\n },\n \"reason\": {\n \"type\": \"string\",\n \"description\": \"Reason for the answer\"\n },\n \"optional\": {\n \"type\": \"boolean\"\n },\n \"count\": {\n \"type\": \"number\"\n },\n \"children\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"value\": {\n \"type\": \"string\",\n \"description\": \"Value of the children's answer\"\n }\n }\n }\n }\n}",
"description": "JSON schema for the structured output",
"optional": true,
"show": {
"llmStructuredOutput[$index].type": "jsonArray"
}
},
{
"label": "Description",
"name": "description",
"type": "string",
"placeholder": "Description of the key"
}
],
"id": "llmAgentflow_0-input-llmStructuredOutput-array",
"display": true
},
{
"label": "Update Flow State",
"name": "llmUpdateState",
"description": "Update runtime state during the execution of the workflow",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Key",
"name": "key",
"type": "asyncOptions",
"loadMethod": "listRuntimeStateKeys",
"freeSolo": true
},
{
"label": "Value",
"name": "value",
"type": "string",
"acceptVariable": true,
"acceptNodeOutputAsVariable": true
}
],
"id": "llmAgentflow_0-input-llmUpdateState-array",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"llmModel": "chatOpenAI",
"llmMessages": [
{
"role": "system",
"content": "<p>You are a financial research planner. Given a request for financial analysis, produce a set of web searches to gather the context needed. Aim for recent headlines, earnings calls or 10K snippets, analyst commentary, and industry background. Output between 1 and 2 search terms to query for.</p>"
},
{
"role": "user",
"content": "<p>Query:</p><p><span class=\"variable\" data-type=\"mention\" data-id=\"$form.query\" data-label=\"$form.query\">{{ $form.query }}</span></p>"
}
],
"llmEnableMemory": true,
"llmReturnResponseAs": "userMessage",
"llmStructuredOutput": [
{
"key": "searches",
"type": "jsonArray",
"enumValues": "",
"jsonSchema": "{\n \"query\": {\n \"type\": \"string\",\n \"description\": \"The search term to feed into a web (or file) search.\"\n },\n \"reason\": {\n \"type\": \"string\",\n \"description\": \"Your reasoning for why this search is relevant.\"\n }\n}",
"description": "A list of searches to perform"
}
],
"llmUpdateState": [
{
"key": "search_key_reason",
"value": "<p><span class=\"variable\" data-type=\"mention\" data-id=\"output.searches\" data-label=\"output.searches\">{{ output.searches }}</span> </p>"
}
],
"llmModelConfig": {
"cache": "",
"modelName": "gpt-4o-mini",
"temperature": 0.9,
"streaming": true,
"maxTokens": "",
"topP": "",
"frequencyPenalty": "",
"presencePenalty": "",
"timeout": "",
"strictToolCalling": "",
"stopSequence": "",
"basepath": "",
"proxyUrl": "",
"baseOptions": "",
"allowImageUploads": "",
"imageResolution": "low",
"reasoningEffort": "medium",
"llmModel": "chatOpenAI"
},
"llmUserMessage": "<p></p>"
},
"outputAnchors": [
{
"id": "llmAgentflow_0-output-llmAgentflow",
"label": "LLM",
"name": "llmAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "agentFlow",
"width": 168,
"height": 71,
"selected": false,
"positionAbsolute": {
"x": -92.42002168895628,
"y": 81.69973969492588
},
"dragging": false
},
{
"id": "iterationAgentflow_0",
"position": {
"x": 122.70987564816664,
"y": -7.337791594648152
},
"data": {
"id": "iterationAgentflow_0",
"label": "Iteration 0",
"version": 1,
"name": "iterationAgentflow",
"type": "Iteration",
"color": "#9C89B8",
"baseClasses": ["Iteration"],
"category": "Agent Flows",
"description": "Execute the nodes within the iteration block through N iterations",
"inputParams": [
{
"label": "Array Input",
"name": "iterationInput",
"type": "string",
"description": "The input array to iterate over",
"acceptVariable": true,
"rows": 4,
"id": "iterationAgentflow_0-input-iterationInput-string",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"iterationInput": "<p><span class=\"variable\" data-type=\"mention\" data-id=\"$flow.state.search_key_reason\" data-label=\"$flow.state.search_key_reason\">{{ $flow.state.search_key_reason }}</span> </p>"
},
"outputAnchors": [
{
"id": "iterationAgentflow_0-output-iterationAgentflow",
"label": "Iteration",
"name": "iterationAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "iteration",
"width": 300,
"height": 250,
"selected": false,
"positionAbsolute": {
"x": 122.70987564816664,
"y": -7.337791594648152
},
"dragging": false
},
{
"id": "agentAgentflow_0",
"position": {
"x": 67.5,
"y": 80.5
},
"data": {
"id": "agentAgentflow_0",
"label": "Search Agent",
"version": 1,
"name": "agentAgentflow",
"type": "Agent",
"color": "#4DD0E1",
"baseClasses": ["Agent"],
"category": "Agent Flows",
"description": "Dynamically choose and utilize tools during runtime, enabling multi-step reasoning",
"inputParams": [
{
"label": "Model",
"name": "agentModel",
"type": "asyncOptions",
"loadMethod": "listModels",
"loadConfig": true,
"id": "agentAgentflow_0-input-agentModel-asyncOptions",
"display": true
},
{
"label": "Messages",
"name": "agentMessages",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Role",
"name": "role",
"type": "options",
"options": [
{
"label": "System",
"name": "system"
},
{
"label": "Assistant",
"name": "assistant"
},
{
"label": "Developer",
"name": "developer"
},
{
"label": "User",
"name": "user"
}
]
},
{
"label": "Content",
"name": "content",
"type": "string",
"acceptVariable": true,
"generateInstruction": true,
"rows": 4
}
],
"id": "agentAgentflow_0-input-agentMessages-array",
"display": true
},
{
"label": "Tools",
"name": "agentTools",
"type": "array",
"optional": true,
"array": [
{
"label": "Tool",
"name": "agentSelectedTool",
"type": "asyncOptions",
"loadMethod": "listTools",
"loadConfig": true
},
{
"label": "Require Human Input",
"name": "agentSelectedToolRequiresHumanInput",
"type": "boolean",
"optional": true
}
],
"id": "agentAgentflow_0-input-agentTools-array",
"display": true
},
{
"label": "Knowledge (Document Stores)",
"name": "agentKnowledgeDocumentStores",
"type": "array",
"description": "Give your agent context about different document sources. Document stores must be upserted in advance.",
"array": [
{
"label": "Document Store",
"name": "documentStore",
"type": "asyncOptions",
"loadMethod": "listStores"
},
{
"label": "Describe Knowledge",
"name": "docStoreDescription",
"type": "string",
"generateDocStoreDescription": true,
"placeholder": "Describe what the knowledge base is about, this is useful for the AI to know when and how to search for correct information",
"rows": 4
},
{
"label": "Return Source Documents",
"name": "returnSourceDocuments",
"type": "boolean",
"optional": true
}
],
"optional": true,
"id": "agentAgentflow_0-input-agentKnowledgeDocumentStores-array",
"display": true
},
{
"label": "Knowledge (Vector Embeddings)",
"name": "agentKnowledgeVSEmbeddings",
"type": "array",
"description": "Give your agent context about different document sources from existing vector stores and embeddings",
"array": [
{
"label": "Vector Store",
"name": "vectorStore",
"type": "asyncOptions",
"loadMethod": "listVectorStores",
"loadConfig": true
},
{
"label": "Embedding Model",
"name": "embeddingModel",
"type": "asyncOptions",
"loadMethod": "listEmbeddings",
"loadConfig": true
},
{
"label": "Knowledge Name",
"name": "knowledgeName",
"type": "string",
"placeholder": "A short name for the knowledge base, this is useful for the AI to know when and how to search for correct information"
},
{
"label": "Describe Knowledge",
"name": "knowledgeDescription",
"type": "string",
"placeholder": "Describe what the knowledge base is about, this is useful for the AI to know when and how to search for correct information",
"rows": 4
},
{
"label": "Return Source Documents",
"name": "returnSourceDocuments",
"type": "boolean",
"optional": true
}
],
"optional": true,
"id": "agentAgentflow_0-input-agentKnowledgeVSEmbeddings-array",
"display": true
},
{
"label": "Enable Memory",
"name": "agentEnableMemory",
"type": "boolean",
"description": "Enable memory for the conversation thread",
"default": true,
"optional": true,
"id": "agentAgentflow_0-input-agentEnableMemory-boolean",
"display": true
},
{
"label": "Memory Type",
"name": "agentMemoryType",
"type": "options",
"options": [
{
"label": "All Messages",
"name": "allMessages",
"description": "Retrieve all messages from the conversation"
},
{
"label": "Window Size",
"name": "windowSize",
"description": "Uses a fixed window size to surface the last N messages"
},
{
"label": "Conversation Summary",
"name": "conversationSummary",
"description": "Summarizes the whole conversation"
},
{
"label": "Conversation Summary Buffer",
"name": "conversationSummaryBuffer",
"description": "Summarize conversations once token limit is reached. Default to 2000"
}
],
"optional": true,
"default": "allMessages",
"show": {
"agentEnableMemory": true
},
"id": "agentAgentflow_0-input-agentMemoryType-options",
"display": true
},
{
"label": "Window Size",
"name": "agentMemoryWindowSize",
"type": "number",
"default": "20",
"description": "Uses a fixed window size to surface the last N messages",
"show": {
"agentMemoryType": "windowSize"
},
"id": "agentAgentflow_0-input-agentMemoryWindowSize-number",
"display": false
},
{
"label": "Max Token Limit",
"name": "agentMemoryMaxTokenLimit",
"type": "number",
"default": "2000",
"description": "Summarize conversations once token limit is reached. Default to 2000",
"show": {
"agentMemoryType": "conversationSummaryBuffer"
},
"id": "agentAgentflow_0-input-agentMemoryMaxTokenLimit-number",
"display": false
},
{
"label": "Input Message",
"name": "agentUserMessage",
"type": "string",
"description": "Add an input message as user message at the end of the conversation",
"rows": 4,
"optional": true,
"acceptVariable": true,
"show": {
"agentEnableMemory": true
},
"id": "agentAgentflow_0-input-agentUserMessage-string",
"display": true
},
{
"label": "Return Response As",
"name": "agentReturnResponseAs",
"type": "options",
"options": [
{
"label": "User Message",
"name": "userMessage"
},
{
"label": "Assistant Message",
"name": "assistantMessage"
}
],
"default": "userMessage",
"id": "agentAgentflow_0-input-agentReturnResponseAs-options",
"display": true
},
{
"label": "Update Flow State",
"name": "agentUpdateState",
"description": "Update runtime state during the execution of the workflow",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Key",
"name": "key",
"type": "asyncOptions",
"loadMethod": "listRuntimeStateKeys",
"freeSolo": true
},
{
"label": "Value",
"name": "value",
"type": "string",
"acceptVariable": true,
"acceptNodeOutputAsVariable": true
}
],
"id": "agentAgentflow_0-input-agentUpdateState-array",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"agentModel": "chatOpenAI",
"agentMessages": [
{
"role": "system",
"content": "<p>You are a research assistant specializing in financial topics. Given a search term, use web search to retrieve uptodate context and produce a short summary of at most 300 words. Focus on key numbers, events, or quotes that will be useful to a financial analyst.</p>"
}
],
"agentTools": [
{
"agentSelectedTool": "googleCustomSearch",
"agentSelectedToolConfig": {
"agentSelectedTool": "googleCustomSearch"
}
}
],
"agentKnowledgeDocumentStores": "",
"agentEnableMemory": true,
"agentMemoryType": "allMessages",
"agentUserMessage": "<p>Search term: {{$iteration.query}}</p><p>Reason: {{$iteration.reason}}</p>",
"agentReturnResponseAs": "userMessage",
"agentUpdateState": "",
"agentModelConfig": {
"cache": "",
"modelName": "gpt-4o-mini",
"temperature": 0.9,
"streaming": true,
"maxTokens": "",
"topP": "",
"frequencyPenalty": "",
"presencePenalty": "",
"timeout": "",
"strictToolCalling": "",
"stopSequence": "",
"basepath": "",
"proxyUrl": "",
"baseOptions": "",
"allowImageUploads": "",
"imageResolution": "low",
"reasoningEffort": "medium",
"agentModel": "chatOpenAI"
}
},
"outputAnchors": [
{
"id": "agentAgentflow_0-output-agentAgentflow",
"label": "Agent",
"name": "agentAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "agentFlow",
"parentNode": "iterationAgentflow_0",
"extent": "parent",
"width": 168,
"height": 103,
"selected": false,
"positionAbsolute": {
"x": 190.20987564816664,
"y": 73.16220840535185
},
"dragging": false
},
{
"id": "agentAgentflow_1",
"position": {
"x": 461.76351005035474,
"y": 81.71183989476083
},
"data": {
"id": "agentAgentflow_1",
"label": "Writer Agent",
"version": 1,
"name": "agentAgentflow",
"type": "Agent",
"color": "#4DD0E1",
"baseClasses": ["Agent"],
"category": "Agent Flows",
"description": "Dynamically choose and utilize tools during runtime, enabling multi-step reasoning",
"inputParams": [
{
"label": "Model",
"name": "agentModel",
"type": "asyncOptions",
"loadMethod": "listModels",
"loadConfig": true,
"id": "agentAgentflow_1-input-agentModel-asyncOptions",
"display": true
},
{
"label": "Messages",
"name": "agentMessages",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Role",
"name": "role",
"type": "options",
"options": [
{
"label": "System",
"name": "system"
},
{
"label": "Assistant",
"name": "assistant"
},
{
"label": "Developer",
"name": "developer"
},
{
"label": "User",
"name": "user"
}
]
},
{
"label": "Content",
"name": "content",
"type": "string",
"acceptVariable": true,
"generateInstruction": true,
"rows": 4
}
],
"id": "agentAgentflow_1-input-agentMessages-array",
"display": true
},
{
"label": "Tools",
"name": "agentTools",
"type": "array",
"optional": true,
"array": [
{
"label": "Tool",
"name": "agentSelectedTool",
"type": "asyncOptions",
"loadMethod": "listTools",
"loadConfig": true
},
{
"label": "Require Human Input",
"name": "agentSelectedToolRequiresHumanInput",
"type": "boolean",
"optional": true
}
],
"id": "agentAgentflow_1-input-agentTools-array",
"display": true
},
{
"label": "Knowledge (Document Stores)",
"name": "agentKnowledgeDocumentStores",
"type": "array",
"description": "Give your agent context about different document sources. Document stores must be upserted in advance.",
"array": [
{
"label": "Document Store",
"name": "documentStore",
"type": "asyncOptions",
"loadMethod": "listStores"
},
{
"label": "Describe Knowledge",
"name": "docStoreDescription",
"type": "string",
"generateDocStoreDescription": true,
"placeholder": "Describe what the knowledge base is about, this is useful for the AI to know when and how to search for correct information",
"rows": 4
},
{
"label": "Return Source Documents",
"name": "returnSourceDocuments",
"type": "boolean",
"optional": true
}
],
"optional": true,
"id": "agentAgentflow_1-input-agentKnowledgeDocumentStores-array",
"display": true
},
{
"label": "Knowledge (Vector Embeddings)",
"name": "agentKnowledgeVSEmbeddings",
"type": "array",
"description": "Give your agent context about different document sources from existing vector stores and embeddings",
"array": [
{
"label": "Vector Store",
"name": "vectorStore",
"type": "asyncOptions",
"loadMethod": "listVectorStores",
"loadConfig": true
},
{
"label": "Embedding Model",
"name": "embeddingModel",
"type": "asyncOptions",
"loadMethod": "listEmbeddings",
"loadConfig": true
},
{
"label": "Knowledge Name",
"name": "knowledgeName",
"type": "string",
"placeholder": "A short name for the knowledge base, this is useful for the AI to know when and how to search for correct information"
},
{
"label": "Describe Knowledge",
"name": "knowledgeDescription",
"type": "string",
"placeholder": "Describe what the knowledge base is about, this is useful for the AI to know when and how to search for correct information",
"rows": 4
},
{
"label": "Return Source Documents",
"name": "returnSourceDocuments",
"type": "boolean",
"optional": true
}
],
"optional": true,
"id": "agentAgentflow_1-input-agentKnowledgeVSEmbeddings-array",
"display": true
},
{
"label": "Enable Memory",
"name": "agentEnableMemory",
"type": "boolean",
"description": "Enable memory for the conversation thread",
"default": true,
"optional": true,
"id": "agentAgentflow_1-input-agentEnableMemory-boolean",
"display": true
},
{
"label": "Memory Type",
"name": "agentMemoryType",
"type": "options",
"options": [
{
"label": "All Messages",
"name": "allMessages",
"description": "Retrieve all messages from the conversation"
},
{
"label": "Window Size",
"name": "windowSize",
"description": "Uses a fixed window size to surface the last N messages"
},
{
"label": "Conversation Summary",
"name": "conversationSummary",
"description": "Summarizes the whole conversation"
},
{
"label": "Conversation Summary Buffer",
"name": "conversationSummaryBuffer",
"description": "Summarize conversations once token limit is reached. Default to 2000"
}
],
"optional": true,
"default": "allMessages",
"show": {
"agentEnableMemory": true
},
"id": "agentAgentflow_1-input-agentMemoryType-options",
"display": true
},
{
"label": "Window Size",
"name": "agentMemoryWindowSize",
"type": "number",
"default": "20",
"description": "Uses a fixed window size to surface the last N messages",
"show": {
"agentMemoryType": "windowSize"
},
"id": "agentAgentflow_1-input-agentMemoryWindowSize-number",
"display": false
},
{
"label": "Max Token Limit",
"name": "agentMemoryMaxTokenLimit",
"type": "number",
"default": "2000",
"description": "Summarize conversations once token limit is reached. Default to 2000",
"show": {
"agentMemoryType": "conversationSummaryBuffer"
},
"id": "agentAgentflow_1-input-agentMemoryMaxTokenLimit-number",
"display": false
},
{
"label": "Input Message",
"name": "agentUserMessage",
"type": "string",
"description": "Add an input message as user message at the end of the conversation",
"rows": 4,
"optional": true,
"acceptVariable": true,
"show": {
"agentEnableMemory": true
},
"id": "agentAgentflow_1-input-agentUserMessage-string",
"display": true
},
{
"label": "Return Response As",
"name": "agentReturnResponseAs",
"type": "options",
"options": [
{
"label": "User Message",
"name": "userMessage"
},
{
"label": "Assistant Message",
"name": "assistantMessage"
}
],
"default": "userMessage",
"id": "agentAgentflow_1-input-agentReturnResponseAs-options",
"display": true
},
{
"label": "Update Flow State",
"name": "agentUpdateState",
"description": "Update runtime state during the execution of the workflow",
"type": "array",
"optional": true,
"acceptVariable": true,
"array": [
{
"label": "Key",
"name": "key",
"type": "asyncOptions",
"loadMethod": "listRuntimeStateKeys",
"freeSolo": true
},
{
"label": "Value",
"name": "value",
"type": "string",
"acceptVariable": true,
"acceptNodeOutputAsVariable": true
}
],
"id": "agentAgentflow_1-input-agentUpdateState-array",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"agentModel": "chatOpenAI",
"agentMessages": [
{
"role": "system",
"content": "<p>You are a senior financial analyst. You will be provided with the original query and a set of raw search summaries. Your task is to synthesize these into a longform markdown report (at least several paragraphs) including a short executive summary and followup questions</p>"
}
],
"agentTools": "",
"agentKnowledgeDocumentStores": "",
"agentEnableMemory": true,
"agentMemoryType": "allMessages",
"agentUserMessage": "<p>Original query: <span class=\"variable\" data-type=\"mention\" data-id=\"$form.query\" data-label=\"$form.query\">{{ $form.query }}</span></p><p>Summarized search results: <span class=\"variable\" data-type=\"mention\" data-id=\"iterationAgentflow_0\" data-label=\"iterationAgentflow_0\">{{ iterationAgentflow_0 }}</span></p>",
"agentReturnResponseAs": "userMessage",
"agentUpdateState": "",
"agentModelConfig": {
"cache": "",
"modelName": "gpt-4o-mini",
"temperature": 0.9,
"streaming": true,
"maxTokens": "",
"topP": "",
"frequencyPenalty": "",
"presencePenalty": "",
"timeout": "",
"strictToolCalling": "",
"stopSequence": "",
"basepath": "",
"proxyUrl": "",
"baseOptions": "",
"allowImageUploads": "",
"imageResolution": "low",
"reasoningEffort": "medium",
"agentModel": "chatOpenAI"
}
},
"outputAnchors": [
{
"id": "agentAgentflow_1-output-agentAgentflow",
"label": "Agent",
"name": "agentAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "agentFlow",
"width": 168,
"height": 71,
"selected": false,
"positionAbsolute": {
"x": 461.76351005035474,
"y": 81.71183989476083
},
"dragging": false
},
{
"id": "stickyNoteAgentflow_0",
"position": {
"x": 214.77714507955716,
"y": -165.2444952661696
},
"data": {
"id": "stickyNoteAgentflow_0",
"label": "Sticky Note",
"version": 1,
"name": "stickyNoteAgentflow",
"type": "StickyNote",
"color": "#fee440",
"baseClasses": ["StickyNote"],
"category": "Agent Flows",
"description": "Add notes to the agent flow",
"inputParams": [
{
"label": "",
"name": "note",
"type": "string",
"rows": 1,
"placeholder": "Type something here",
"optional": true,
"id": "stickyNoteAgentflow_0-input-note-string",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"note": "Search Agent will iterate through the search terms and search the web using tool"
},
"outputAnchors": [
{
"id": "stickyNoteAgentflow_0-output-stickyNoteAgentflow",
"label": "Sticky Note",
"name": "stickyNoteAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "stickyNote",
"width": 189,
"height": 142,
"selected": false,
"positionAbsolute": {
"x": 214.77714507955716,
"y": -165.2444952661696
},
"dragging": false
},
{
"id": "stickyNoteAgentflow_1",
"position": {
"x": -100.05436009717414,
"y": -45.56902388417101
},
"data": {
"id": "stickyNoteAgentflow_1",
"label": "Sticky Note (1)",
"version": 1,
"name": "stickyNoteAgentflow",
"type": "StickyNote",
"color": "#fee440",
"baseClasses": ["StickyNote"],
"category": "Agent Flows",
"description": "Add notes to the agent flow",
"inputParams": [
{
"label": "",
"name": "note",
"type": "string",
"rows": 1,
"placeholder": "Type something here",
"optional": true,
"id": "stickyNoteAgentflow_1-input-note-string",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"note": "Planner will generate list of search terms to query for"
},
"outputAnchors": [
{
"id": "stickyNoteAgentflow_1-output-stickyNoteAgentflow",
"label": "Sticky Note",
"name": "stickyNoteAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "stickyNote",
"width": 189,
"height": 101,
"selected": false,
"positionAbsolute": {
"x": -100.05436009717414,
"y": -45.56902388417101
},
"dragging": false
},
{
"id": "stickyNoteAgentflow_2",
"position": {
"x": 457.98399139175314,
"y": -35.19227767879839
},
"data": {
"id": "stickyNoteAgentflow_2",
"label": "Sticky Note (2)",
"version": 1,
"name": "stickyNoteAgentflow",
"type": "StickyNote",
"color": "#fee440",
"baseClasses": ["StickyNote"],
"category": "Agent Flows",
"description": "Add notes to the agent flow",
"inputParams": [
{
"label": "",
"name": "note",
"type": "string",
"rows": 1,
"placeholder": "Type something here",
"optional": true,
"id": "stickyNoteAgentflow_2-input-note-string",
"display": true
}
],
"inputAnchors": [],
"inputs": {
"note": "Generate the final report from the search results"
},
"outputAnchors": [
{
"id": "stickyNoteAgentflow_2-output-stickyNoteAgentflow",
"label": "Sticky Note",
"name": "stickyNoteAgentflow"
}
],
"outputs": {},
"selected": false
},
"type": "stickyNote",
"width": 189,
"height": 101,
"selected": false,
"positionAbsolute": {
"x": 457.98399139175314,
"y": -35.19227767879839
},
"dragging": false
}
],
"edges": [
{
"source": "startAgentflow_0",
"sourceHandle": "startAgentflow_0-output-startAgentflow",
"target": "llmAgentflow_0",
"targetHandle": "llmAgentflow_0",
"data": {
"sourceColor": "#7EE787",
"targetColor": "#64B5F6",
"isHumanInput": false
},
"type": "agentFlow",
"id": "startAgentflow_0-startAgentflow_0-output-startAgentflow-llmAgentflow_0-llmAgentflow_0"
},
{
"source": "llmAgentflow_0",
"sourceHandle": "llmAgentflow_0-output-llmAgentflow",
"target": "iterationAgentflow_0",
"targetHandle": "iterationAgentflow_0",
"data": {
"sourceColor": "#64B5F6",
"targetColor": "#9C89B8",
"isHumanInput": false
},
"type": "agentFlow",
"id": "llmAgentflow_0-llmAgentflow_0-output-llmAgentflow-iterationAgentflow_0-iterationAgentflow_0"
},
{
"source": "iterationAgentflow_0",
"sourceHandle": "iterationAgentflow_0-output-iterationAgentflow",
"target": "agentAgentflow_1",
"targetHandle": "agentAgentflow_1",
"data": {
"sourceColor": "#9C89B8",
"targetColor": "#4DD0E1",
"isHumanInput": false
},
"type": "agentFlow",
"id": "iterationAgentflow_0-iterationAgentflow_0-output-iterationAgentflow-agentAgentflow_1-agentAgentflow_1"
}
]
}