Flowise/packages/components/nodes/vectorstores/Elasticsearch/ElasticSearchBase.ts

194 lines
6.5 KiB
TypeScript

import {
getBaseClasses,
getCredentialData,
getCredentialParam,
ICommonObject,
INodeData,
INodeOutputsValue,
INodeParams
} from '../../../src'
import { Client, ClientOptions } from '@elastic/elasticsearch'
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
import { Embeddings } from 'langchain/embeddings/base'
import { VectorStore } from 'langchain/vectorstores/base'
import { Document } from 'langchain/document'
export abstract class ElasticSearchBase {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
protected constructor() {
this.type = 'Elasticsearch'
this.icon = 'elasticsearch.png'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
}
this.inputs = [
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<INDEX_NAME>',
type: 'string'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Similarity',
name: 'similarity',
description: 'Similarity measure used in Elasticsearch.',
type: 'options',
default: 'l2_norm',
options: [
{
label: 'l2_norm',
name: 'l2_norm'
},
{
label: 'dot_product',
name: 'dot_product'
},
{
label: 'cosine',
name: 'cosine'
}
],
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Elasticsearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Elasticsearch Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
}
]
}
abstract constructVectorStore(
embeddings: Embeddings,
elasticSearchClientArgs: ElasticClientArgs,
docs: Document<Record<string, any>>[] | undefined
): Promise<VectorStore>
async init(nodeData: INodeData, _: string, options: ICommonObject, docs: Document<Record<string, any>>[] | undefined): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
const cloudId = getCredentialParam('cloudId', credentialData, nodeData)
const indexName = nodeData.inputs?.indexName as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
const elasticSearchClientArgs = this.prepareClientArgs(endPoint, cloudId, credentialData, nodeData, similarityMeasure, indexName)
const vectorStore = await this.constructVectorStore(embeddings, elasticSearchClientArgs, docs)
if (output === 'retriever') {
return vectorStore.asRetriever(k)
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
protected prepareConnectionOptions(
endPoint: string | undefined,
cloudId: string | undefined,
credentialData: ICommonObject,
nodeData: INodeData
) {
let elasticSearchClientOptions: ClientOptions = {}
if (endPoint) {
let apiKey = getCredentialParam('apiKey', credentialData, nodeData)
elasticSearchClientOptions = {
node: endPoint,
auth: {
apiKey: apiKey
}
}
} else if (cloudId) {
let username = getCredentialParam('username', credentialData, nodeData)
let password = getCredentialParam('password', credentialData, nodeData)
elasticSearchClientOptions = {
cloud: {
id: cloudId
},
auth: {
username: username,
password: password
}
}
}
return elasticSearchClientOptions
}
protected prepareClientArgs(
endPoint: string | undefined,
cloudId: string | undefined,
credentialData: ICommonObject,
nodeData: INodeData,
similarityMeasure: string,
indexName: string
) {
let elasticSearchClientOptions = this.prepareConnectionOptions(endPoint, cloudId, credentialData, nodeData)
let vectorSearchOptions = {}
switch (similarityMeasure) {
case 'dot_product':
vectorSearchOptions = {
similarity: 'dot_product'
}
break
case 'cosine':
vectorSearchOptions = {
similarity: 'cosine'
}
break
default:
vectorSearchOptions = {
similarity: 'l2_norm'
}
}
const elasticSearchClientArgs: ElasticClientArgs = {
client: new Client(elasticSearchClientOptions),
indexName: indexName,
vectorSearchOptions: vectorSearchOptions
}
return elasticSearchClientArgs
}
}