Flowise/packages/components/nodes/vectorstores/Astra/Astra.ts

191 lines
7.0 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { flatten } from 'lodash'
import { Embeddings } from 'langchain/embeddings/base'
import { Document } from 'langchain/document'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData } from '../../../src/utils'
import { AstraDBVectorStore, AstraLibArgs } from '@langchain/community/vectorstores/astradb'
class Astra_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Astra'
this.name = 'Astra'
this.version = 1.0
this.type = 'Astra'
this.icon = 'astra.svg'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity search upon query using DataStax Astra DB, a serverless vector database thats perfect for managing mission-critical AI workloads`
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['AstraDBApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Vector Dimension',
name: 'vectorDimension',
type: 'number',
placeholder: '1536',
optional: true,
description: 'Dimension used for storing vector embedding'
},
{
label: 'Similarity Metric',
name: 'similarityMetric',
type: 'string',
placeholder: 'cosine',
optional: true,
description: 'cosine | euclidean | dot_product'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Astra Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Astra Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(AstraDBVectorStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const vectorDimension = nodeData.inputs?.vectorDimension as number
const similarityMetric = nodeData.inputs?.similarityMetric as 'cosine' | 'euclidean' | 'dot_product' | undefined
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const expectedSimilarityMetric = ['cosine', 'euclidean', 'dot_product']
if (similarityMetric && !expectedSimilarityMetric.includes(similarityMetric)) {
throw new Error(`Invalid Similarity Metric should be one of 'cosine' | 'euclidean' | 'dot_product'`)
}
const clientConfig = {
token: credentialData?.applicationToken,
endpoint: credentialData?.dbEndPoint
}
const astraConfig: AstraLibArgs = {
...clientConfig,
collection: credentialData.collectionName ?? 'flowise_test',
collectionOptions: {
vector: {
dimension: vectorDimension ?? 1536,
metric: similarityMetric ?? 'cosine'
}
}
}
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
await AstraDBVectorStore.fromDocuments(finalDocs, embeddings, astraConfig)
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const vectorDimension = nodeData.inputs?.vectorDimension as number
const similarityMetric = nodeData.inputs?.similarityMetric as 'cosine' | 'euclidean' | 'dot_product' | undefined
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const expectedSimilarityMetric = ['cosine', 'euclidean', 'dot_product']
if (similarityMetric && !expectedSimilarityMetric.includes(similarityMetric)) {
throw new Error(`Invalid Similarity Metric should be one of 'cosine' | 'euclidean' | 'dot_product'`)
}
const clientConfig = {
token: credentialData?.applicationToken,
endpoint: credentialData?.dbEndPoint
}
const astraConfig: AstraLibArgs = {
...clientConfig,
collection: credentialData.collectionName ?? 'flowise_test',
collectionOptions: {
vector: {
dimension: vectorDimension ?? 1536,
metric: similarityMetric ?? 'cosine'
}
}
}
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
const vectorStore = await AstraDBVectorStore.fromExistingIndex(embeddings, astraConfig)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: Astra_VectorStores }