Flowise/packages/components/nodes/vectorstores/Milvus/Milvus.ts

359 lines
13 KiB
TypeScript

import { flatten } from 'lodash'
import { DataType, ErrorCode, MetricType, IndexType } from '@zilliz/milvus2-sdk-node'
import { Document } from 'langchain/document'
import { MilvusLibArgs, Milvus } from 'langchain/vectorstores/milvus'
import { Embeddings } from 'langchain/embeddings/base'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
interface InsertRow {
[x: string]: string | number[]
}
class Milvus_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Milvus'
this.name = 'milvus'
this.version = 1.0
this.type = 'Milvus'
this.icon = 'milvus.svg'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity search upon query using Milvus, world's most advanced open-source vector database`
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
optional: true,
credentialNames: ['milvusAuth']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Milvus Server URL',
name: 'milvusServerUrl',
type: 'string',
placeholder: 'http://localhost:19530'
},
{
label: 'Milvus Collection Name',
name: 'milvusCollection',
type: 'string'
},
{
label: 'Milvus Text Field',
name: 'milvusTextField',
type: 'string',
placeholder: 'langchain_text',
optional: true,
additionalParams: true
},
{
label: 'Milvus Filter',
name: 'milvusFilter',
type: 'string',
optional: true,
description:
'Filter data with a simple string query. Refer Milvus <a target="_blank" href="https://milvus.io/blog/2022-08-08-How-to-use-string-data-to-empower-your-similarity-search-applications.md#Hybrid-search">docs</a> for more details.',
placeholder: 'doc=="a"',
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Milvus Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Milvus Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(Milvus)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
// server setup
const address = nodeData.inputs?.milvusServerUrl as string
const collectionName = nodeData.inputs?.milvusCollection as string
// embeddings
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
// credential
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const milvusUser = getCredentialParam('milvusUser', credentialData, nodeData)
const milvusPassword = getCredentialParam('milvusPassword', credentialData, nodeData)
// init MilvusLibArgs
const milVusArgs: MilvusLibArgs = {
url: address,
collectionName: collectionName
}
if (milvusUser) milVusArgs.username = milvusUser
if (milvusPassword) milVusArgs.password = milvusPassword
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
const vectorStore = await MilvusUpsert.fromDocuments(finalDocs, embeddings, milVusArgs)
// Avoid Illegal Invocation
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: string) => {
return await similaritySearchVectorWithScore(query, k, vectorStore, undefined, filter)
}
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
// server setup
const address = nodeData.inputs?.milvusServerUrl as string
const collectionName = nodeData.inputs?.milvusCollection as string
const milvusFilter = nodeData.inputs?.milvusFilter as string
const textField = nodeData.inputs?.milvusTextField as string
// embeddings
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
// output
const output = nodeData.outputs?.output as string
// format data
const k = topK ? parseFloat(topK) : 4
// credential
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const milvusUser = getCredentialParam('milvusUser', credentialData, nodeData)
const milvusPassword = getCredentialParam('milvusPassword', credentialData, nodeData)
// init MilvusLibArgs
const milVusArgs: MilvusLibArgs = {
url: address,
collectionName: collectionName,
textField: textField
}
if (milvusUser) milVusArgs.username = milvusUser
if (milvusPassword) milVusArgs.password = milvusPassword
const vectorStore = await Milvus.fromExistingCollection(embeddings, milVusArgs)
// Avoid Illegal Invocation
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: string) => {
return await similaritySearchVectorWithScore(query, k, vectorStore, milvusFilter, filter)
}
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
const checkJsonString = (value: string): { isJson: boolean; obj: any } => {
try {
const result = JSON.parse(value)
return { isJson: true, obj: result }
} catch (e) {
return { isJson: false, obj: null }
}
}
const similaritySearchVectorWithScore = async (query: number[], k: number, vectorStore: Milvus, milvusFilter?: string, filter?: string) => {
const hasColResp = await vectorStore.client.hasCollection({
collection_name: vectorStore.collectionName
})
if (hasColResp.status.error_code !== ErrorCode.SUCCESS) {
throw new Error(`Error checking collection: ${hasColResp}`)
}
if (hasColResp.value === false) {
throw new Error(`Collection not found: ${vectorStore.collectionName}, please create collection before search.`)
}
const filterStr = milvusFilter ?? filter ?? ''
await vectorStore.grabCollectionFields()
const loadResp = await vectorStore.client.loadCollectionSync({
collection_name: vectorStore.collectionName
})
if (loadResp.error_code !== ErrorCode.SUCCESS) {
throw new Error(`Error loading collection: ${loadResp}`)
}
const outputFields = vectorStore.fields.filter((field) => field !== vectorStore.vectorField)
const searchResp = await vectorStore.client.search({
collection_name: vectorStore.collectionName,
search_params: {
anns_field: vectorStore.vectorField,
topk: k.toString(),
metric_type: vectorStore.indexCreateParams.metric_type,
params: vectorStore.indexSearchParams
},
output_fields: outputFields,
vector_type: DataType.FloatVector,
vectors: [query],
filter: filterStr
})
if (searchResp.status.error_code !== ErrorCode.SUCCESS) {
throw new Error(`Error searching data: ${JSON.stringify(searchResp)}`)
}
const results: [Document, number][] = []
searchResp.results.forEach((result) => {
const fields = {
pageContent: '',
metadata: {} as Record<string, any>
}
Object.keys(result).forEach((key) => {
if (key === vectorStore.textField) {
fields.pageContent = result[key]
} else if (vectorStore.fields.includes(key) || key === vectorStore.primaryField) {
if (typeof result[key] === 'string') {
const { isJson, obj } = checkJsonString(result[key])
fields.metadata[key] = isJson ? obj : result[key]
} else {
fields.metadata[key] = result[key]
}
}
})
results.push([new Document(fields), result.score])
})
return results
}
class MilvusUpsert extends Milvus {
async addVectors(vectors: number[][], documents: Document[]): Promise<void> {
if (vectors.length === 0) {
return
}
await this.ensureCollection(vectors, documents)
const insertDatas: InsertRow[] = []
for (let index = 0; index < vectors.length; index++) {
const vec = vectors[index]
const doc = documents[index]
const data: InsertRow = {
[this.textField]: doc.pageContent,
[this.vectorField]: vec
}
this.fields.forEach((field) => {
switch (field) {
case this.primaryField:
if (!this.autoId) {
if (doc.metadata[this.primaryField] === undefined) {
throw new Error(
`The Collection's primaryField is configured with autoId=false, thus its value must be provided through metadata.`
)
}
data[field] = doc.metadata[this.primaryField]
}
break
case this.textField:
data[field] = doc.pageContent
break
case this.vectorField:
data[field] = vec
break
default: // metadata fields
if (doc.metadata[field] === undefined) {
throw new Error(`The field "${field}" is not provided in documents[${index}].metadata.`)
} else if (typeof doc.metadata[field] === 'object') {
data[field] = JSON.stringify(doc.metadata[field])
} else {
data[field] = doc.metadata[field]
}
break
}
})
insertDatas.push(data)
}
const descIndexResp = await this.client.describeIndex({
collection_name: this.collectionName
})
if (descIndexResp.status.error_code === ErrorCode.IndexNotExist) {
const resp = await this.client.createIndex({
collection_name: this.collectionName,
field_name: this.vectorField,
index_name: `myindex_${Date.now().toString()}`,
index_type: IndexType.AUTOINDEX,
metric_type: MetricType.L2
})
if (resp.error_code !== ErrorCode.SUCCESS) {
throw new Error(`Error creating index`)
}
}
const insertResp = await this.client.insert({
collection_name: this.collectionName,
fields_data: insertDatas
})
if (insertResp.status.error_code !== ErrorCode.SUCCESS) {
throw new Error(`Error inserting data: ${JSON.stringify(insertResp)}`)
}
await this.client.flushSync({ collection_names: [this.collectionName] })
}
}
module.exports = { nodeClass: Milvus_VectorStores }