Flowise/packages/components/nodes/vectorstores/Qdrant/Qdrant_Upsert.ts

191 lines
6.4 KiB
TypeScript

import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { QdrantClient } from '@qdrant/js-client-rest'
import { QdrantVectorStore, QdrantLibArgs } from 'langchain/vectorstores/qdrant'
import { Embeddings } from 'langchain/embeddings/base'
import { Document } from 'langchain/document'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { flatten } from 'lodash'
import { VectorStoreRetrieverInput } from 'langchain/vectorstores/base'
type RetrieverConfig = Partial<VectorStoreRetrieverInput<QdrantVectorStore>>
class QdrantUpsert_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Qdrant Upsert Document'
this.name = 'qdrantUpsert'
this.version = 2.0
this.type = 'Qdrant'
this.icon = 'qdrant.png'
this.category = 'Vector Stores'
this.description = 'Upsert documents to Qdrant'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'DEPRECATING'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
description: 'Only needed when using Qdrant cloud hosted',
optional: true,
credentialNames: ['qdrantApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Qdrant Server URL',
name: 'qdrantServerUrl',
type: 'string',
placeholder: 'http://localhost:6333'
},
{
label: 'Qdrant Collection Name',
name: 'qdrantCollection',
type: 'string'
},
{
label: 'Vector Dimension',
name: 'qdrantVectorDimension',
type: 'number',
default: 1536,
additionalParams: true
},
{
label: 'Similarity',
name: 'qdrantSimilarity',
description: 'Similarity measure used in Qdrant.',
type: 'options',
default: 'Cosine',
options: [
{
label: 'Cosine',
name: 'Cosine'
},
{
label: 'Euclid',
name: 'Euclid'
},
{
label: 'Dot',
name: 'Dot'
}
],
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Qdrant Search Filter',
name: 'qdrantFilter',
description: 'Only return points which satisfy the conditions',
type: 'json',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Qdrant Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Qdrant Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(QdrantVectorStore)]
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const qdrantServerUrl = nodeData.inputs?.qdrantServerUrl as string
const collectionName = nodeData.inputs?.qdrantCollection as string
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const qdrantSimilarity = nodeData.inputs?.qdrantSimilarity
const qdrantVectorDimension = nodeData.inputs?.qdrantVectorDimension
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
let queryFilter = nodeData.inputs?.qdrantFilter
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const qdrantApiKey = getCredentialParam('qdrantApiKey', credentialData, nodeData)
const client = new QdrantClient({
url: qdrantServerUrl,
apiKey: qdrantApiKey
})
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
const dbConfig: QdrantLibArgs = {
client,
url: qdrantServerUrl,
collectionName,
collectionConfig: {
vectors: {
size: qdrantVectorDimension ? parseInt(qdrantVectorDimension, 10) : 1536,
distance: qdrantSimilarity ?? 'Cosine'
}
}
}
const retrieverConfig: RetrieverConfig = {
k
}
if (queryFilter) {
retrieverConfig.filter = typeof queryFilter === 'object' ? queryFilter : JSON.parse(queryFilter)
}
const vectorStore = await QdrantVectorStore.fromDocuments(finalDocs, embeddings, dbConfig)
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(retrieverConfig)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: QdrantUpsert_VectorStores }