Flowise/packages/components/nodes/chatmodels/ChatGoogleVertexAI/ChatGoogleVertexAI.ts

141 lines
5.5 KiB
TypeScript

import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { ChatGoogleVertexAI, GoogleVertexAIChatInput } from 'langchain/chat_models/googlevertexai'
import { GoogleAuthOptions } from 'google-auth-library'
import { BaseCache } from 'langchain/schema'
class GoogleVertexAI_ChatModels implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
description: string
baseClasses: string[]
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'ChatGoogleVertexAI'
this.name = 'chatGoogleVertexAI'
this.version = 2.0
this.type = 'ChatGoogleVertexAI'
this.icon = 'GoogleVertex.svg'
this.category = 'Chat Models'
this.description = 'Wrapper around VertexAI large language models that use the Chat endpoint'
this.baseClasses = [this.type, ...getBaseClasses(ChatGoogleVertexAI)]
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['googleVertexAuth'],
optional: true,
description:
'Google Vertex AI credential. If you are using a GCP service like Cloud Run, or if you have installed default credentials on your local machine, you do not need to set this credential.'
}
this.inputs = [
{
label: 'Cache',
name: 'cache',
type: 'BaseCache',
optional: true
},
{
label: 'Model Name',
name: 'modelName',
type: 'options',
options: [
{
label: 'chat-bison',
name: 'chat-bison'
},
{
label: 'codechat-bison',
name: 'codechat-bison'
},
{
label: 'chat-bison-32k',
name: 'chat-bison-32k'
},
{
label: 'codechat-bison-32k',
name: 'codechat-bison-32k'
}
],
default: 'chat-bison',
optional: true
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
step: 0.1,
default: 0.9,
optional: true
},
{
label: 'Max Output Tokens',
name: 'maxOutputTokens',
type: 'number',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Top Probability',
name: 'topP',
type: 'number',
step: 0.1,
optional: true,
additionalParams: true
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const googleApplicationCredentialFilePath = getCredentialParam('googleApplicationCredentialFilePath', credentialData, nodeData)
const googleApplicationCredential = getCredentialParam('googleApplicationCredential', credentialData, nodeData)
const projectID = getCredentialParam('projectID', credentialData, nodeData)
const authOptions: GoogleAuthOptions = {}
if (Object.keys(credentialData).length !== 0) {
if (!googleApplicationCredentialFilePath && !googleApplicationCredential)
throw new Error('Please specify your Google Application Credential')
if (!googleApplicationCredentialFilePath && !googleApplicationCredential)
throw new Error(
'Error: More than one component has been inputted. Please use only one of the following: Google Application Credential File Path or Google Credential JSON Object'
)
if (googleApplicationCredentialFilePath && !googleApplicationCredential)
authOptions.keyFile = googleApplicationCredentialFilePath
else if (!googleApplicationCredentialFilePath && googleApplicationCredential)
authOptions.credentials = JSON.parse(googleApplicationCredential)
if (projectID) authOptions.projectId = projectID
}
const temperature = nodeData.inputs?.temperature as string
const modelName = nodeData.inputs?.modelName as string
const maxOutputTokens = nodeData.inputs?.maxOutputTokens as string
const topP = nodeData.inputs?.topP as string
const cache = nodeData.inputs?.cache as BaseCache
const obj: GoogleVertexAIChatInput<GoogleAuthOptions> = {
temperature: parseFloat(temperature),
model: modelName
}
if (Object.keys(authOptions).length !== 0) obj.authOptions = authOptions
if (maxOutputTokens) obj.maxOutputTokens = parseInt(maxOutputTokens, 10)
if (topP) obj.topP = parseFloat(topP)
if (cache) obj.cache = cache
const model = new ChatGoogleVertexAI(obj)
return model
}
}
module.exports = { nodeClass: GoogleVertexAI_ChatModels }