151 lines
5.8 KiB
TypeScript
151 lines
5.8 KiB
TypeScript
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { VectaraStore, VectaraLibArgs, VectaraFilter, VectaraContextConfig } from 'langchain/vectorstores/vectara'
|
|
import { Document } from 'langchain/document'
|
|
import { flatten } from 'lodash'
|
|
|
|
class VectaraUpsert_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Vectara Upsert Document'
|
|
this.name = 'vectaraUpsert'
|
|
this.version = 1.0
|
|
this.type = 'Vectara'
|
|
this.icon = 'vectara.png'
|
|
this.category = 'Vector Stores'
|
|
this.description = 'Upsert documents to Vectara'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['vectaraApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true
|
|
},
|
|
{
|
|
label: 'Vectara Metadata Filter',
|
|
name: 'filter',
|
|
description:
|
|
'Filter to apply to Vectara metadata. Refer to the <a target="_blank" href="https://docs.flowiseai.com/vector-stores/vectara">documentation</a> on how to use Vectara filters with Flowise.',
|
|
type: 'string',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Sentences Before',
|
|
name: 'sentencesBefore',
|
|
description: 'Number of sentences to fetch before the matched sentence. Defaults to 2.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Sentences After',
|
|
name: 'sentencesAfter',
|
|
description: 'Number of sentences to fetch after the matched sentence. Defaults to 2.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Lambda',
|
|
name: 'lambda',
|
|
description:
|
|
'Improves retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Defaults to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Vectara Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Vectara Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
|
|
}
|
|
]
|
|
}
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
const customerId = getCredentialParam('customerID', credentialData, nodeData)
|
|
const corpusId = getCredentialParam('corpusID', credentialData, nodeData)
|
|
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = {} as Embeddings
|
|
const vectaraMetadataFilter = nodeData.inputs?.filter as string
|
|
const sentencesBefore = nodeData.inputs?.sentencesBefore as number
|
|
const sentencesAfter = nodeData.inputs?.sentencesAfter as number
|
|
const lambda = nodeData.inputs?.lambda as number
|
|
const output = nodeData.outputs?.output as string
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseInt(topK, 10) : 4
|
|
|
|
const vectaraArgs: VectaraLibArgs = {
|
|
apiKey: apiKey,
|
|
customerId: customerId,
|
|
corpusId: corpusId
|
|
}
|
|
|
|
const vectaraFilter: VectaraFilter = {}
|
|
if (vectaraMetadataFilter) vectaraFilter.filter = vectaraMetadataFilter
|
|
if (lambda) vectaraFilter.lambda = lambda
|
|
|
|
const vectaraContextConfig: VectaraContextConfig = {}
|
|
if (sentencesBefore) vectaraContextConfig.sentencesBefore = sentencesBefore
|
|
if (sentencesAfter) vectaraContextConfig.sentencesAfter = sentencesAfter
|
|
vectaraFilter.contextConfig = vectaraContextConfig
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
|
|
const vectorStore = await VectaraStore.fromDocuments(finalDocs, embeddings, vectaraArgs)
|
|
|
|
if (output === 'retriever') {
|
|
const retriever = vectorStore.asRetriever(k, vectaraFilter)
|
|
return retriever
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: VectaraUpsert_VectorStores }
|