Flowise/packages/components/nodes/vectorstores/Redis/Redis.ts

349 lines
13 KiB
TypeScript

import { flatten, isEqual } from 'lodash'
import { createClient, SearchOptions, RedisClientOptions } from 'redis'
import { Embeddings } from '@langchain/core/embeddings'
import { RedisVectorStore, RedisVectorStoreConfig } from '@langchain/community/vectorstores/redis'
import { Document } from '@langchain/core/documents'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { escapeAllStrings, escapeSpecialChars, unEscapeSpecialChars } from './utils'
let redisClientSingleton: ReturnType<typeof createClient>
let redisClientOption: RedisClientOptions
const getRedisClient = async (option: RedisClientOptions) => {
if (!redisClientSingleton) {
// if client doesn't exists
redisClientSingleton = createClient(option)
await redisClientSingleton.connect()
redisClientOption = option
return redisClientSingleton
} else if (redisClientSingleton && !isEqual(option, redisClientOption)) {
// if client exists but option changed
redisClientSingleton.quit()
redisClientSingleton = createClient(option)
await redisClientSingleton.connect()
redisClientOption = option
return redisClientSingleton
}
return redisClientSingleton
}
class Redis_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Redis'
this.name = 'redis'
this.version = 1.0
this.description =
'Upsert embedded data and perform similarity search upon query using Redis, an open source, in-memory data structure store'
this.type = 'Redis'
this.icon = 'redis.svg'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['redisCacheUrlApi', 'redisCacheApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<VECTOR_INDEX_NAME>',
type: 'string'
},
{
label: 'Replace Index on Upsert',
name: 'replaceIndex',
description: 'Selecting this option will delete the existing index and recreate a new one when upserting',
default: false,
type: 'boolean'
},
{
label: 'Content Field',
name: 'contentKey',
description: 'Name of the field (column) that contains the actual content',
type: 'string',
default: 'content',
additionalParams: true,
optional: true
},
{
label: 'Metadata Field',
name: 'metadataKey',
description: 'Name of the field (column) that contains the metadata of the document',
type: 'string',
default: 'metadata',
additionalParams: true,
optional: true
},
{
label: 'Vector Field',
name: 'vectorKey',
description: 'Name of the field (column) that contains the vector',
type: 'string',
default: 'content_vector',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Redis Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Redis Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(RedisVectorStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const indexName = nodeData.inputs?.indexName as string
let contentKey = nodeData.inputs?.contentKey as string
let metadataKey = nodeData.inputs?.metadataKey as string
let vectorKey = nodeData.inputs?.vectorKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const replaceIndex = nodeData.inputs?.replaceIndex as boolean
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
if (!redisUrl || redisUrl === '') {
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
}
const docs = nodeData.inputs?.document as Document[]
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
const document = new Document(flattenDocs[i])
escapeAllStrings(document.metadata)
finalDocs.push(document)
}
}
try {
const redisClient = await getRedisClient({ url: redisUrl })
const storeConfig: RedisVectorStoreConfig = {
redisClient: redisClient,
indexName: indexName
}
const isIndexExists = await checkIndexExists(redisClient, indexName)
if (replaceIndex && isIndexExists) {
let response = await redisClient.ft.dropIndex(indexName)
if (process.env.DEBUG === 'true') {
// eslint-disable-next-line no-console
console.log(`Redis Vector Store :: Dropping index [${indexName}], Received Response [${response}]`)
}
}
const vectorStore = await RedisVectorStore.fromDocuments(finalDocs, embeddings, storeConfig)
if (!contentKey || contentKey === '') contentKey = 'content'
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
// Avoid Illegal invocation error
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: any) => {
return await similaritySearchVectorWithScore(
query,
k,
indexName,
metadataKey,
vectorKey,
contentKey,
redisClient,
filter
)
}
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const indexName = nodeData.inputs?.indexName as string
let contentKey = nodeData.inputs?.contentKey as string
let metadataKey = nodeData.inputs?.metadataKey as string
let vectorKey = nodeData.inputs?.vectorKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
if (!redisUrl || redisUrl === '') {
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
}
const redisClient = await getRedisClient({ url: redisUrl })
const storeConfig: RedisVectorStoreConfig = {
redisClient: redisClient,
indexName: indexName
}
const vectorStore = new RedisVectorStore(embeddings, storeConfig)
if (!contentKey || contentKey === '') contentKey = 'content'
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
// Avoid Illegal invocation error
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: any) => {
return await similaritySearchVectorWithScore(query, k, indexName, metadataKey, vectorKey, contentKey, redisClient, filter)
}
if (output === 'retriever') {
return vectorStore.asRetriever(k)
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
const checkIndexExists = async (redisClient: ReturnType<typeof createClient>, indexName: string) => {
try {
await redisClient.ft.info(indexName)
} catch (err: any) {
if (err?.message.includes('unknown command')) {
throw new Error(
'Failed to run FT.INFO command. Please ensure that you are running a RediSearch-capable Redis instance: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/redis#setup'
)
}
// index doesn't exist
return false
}
return true
}
const buildQuery = (
query: number[],
k: number,
metadataKey: string,
vectorKey: string,
contentKey: string,
filter?: string[]
): [string, SearchOptions] => {
const vectorScoreField = 'vector_score'
let hybridFields = '*'
// if a filter is set, modify the hybrid query
if (filter && filter.length) {
// `filter` is a list of strings, then it's applied using the OR operator in the metadata key
hybridFields = `@${metadataKey}:(${filter.map(escapeSpecialChars).join('|')})`
}
const baseQuery = `${hybridFields} => [KNN ${k} @${vectorKey} $vector AS ${vectorScoreField}]`
const returnFields = [metadataKey, contentKey, vectorScoreField]
const options: SearchOptions = {
PARAMS: {
vector: Buffer.from(new Float32Array(query).buffer)
},
RETURN: returnFields,
SORTBY: vectorScoreField,
DIALECT: 2,
LIMIT: {
from: 0,
size: k
}
}
return [baseQuery, options]
}
const similaritySearchVectorWithScore = async (
query: number[],
k: number,
indexName: string,
metadataKey: string,
vectorKey: string,
contentKey: string,
redisClient: ReturnType<typeof createClient>,
filter?: string[]
): Promise<[Document, number][]> => {
const results = await redisClient.ft.search(indexName, ...buildQuery(query, k, metadataKey, vectorKey, contentKey, filter))
const result: [Document, number][] = []
if (results.total) {
for (const res of results.documents) {
if (res.value) {
const document = res.value
if (document.vector_score) {
const metadataString = unEscapeSpecialChars(document[metadataKey] as string)
result.push([
new Document({
pageContent: document[contentKey] as string,
metadata: JSON.parse(metadataString)
}),
Number(document.vector_score)
])
}
}
}
}
return result
}
module.exports = { nodeClass: Redis_VectorStores }