Flowise/packages/components/nodes/chains/ConversationChain/ConversationChain.ts

278 lines
11 KiB
TypeScript

import { ConversationChain } from 'langchain/chains'
import {
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
BaseMessagePromptTemplateLike,
PromptTemplate
} from '@langchain/core/prompts'
import { RunnableSequence } from '@langchain/core/runnables'
import { StringOutputParser } from '@langchain/core/output_parsers'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { HumanMessage } from '@langchain/core/messages'
import { ConsoleCallbackHandler as LCConsoleCallbackHandler } from '@langchain/core/tracers/console'
import { checkInputs, Moderation, streamResponse } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
import { addImagesToMessages, llmSupportsVision } from '../../../src/multiModalUtils'
import { ChatOpenAI } from '../../chatmodels/ChatOpenAI/FlowiseChatOpenAI'
import {
IVisionChatModal,
FlowiseMemory,
ICommonObject,
INode,
INodeData,
INodeParams,
MessageContentImageUrl,
IServerSideEventStreamer
} from '../../../src/Interface'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { getBaseClasses, handleEscapeCharacters, transformBracesWithColon } from '../../../src/utils'
let systemMessage = `The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.`
const inputKey = 'input'
class ConversationChain_Chains implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
sessionId?: string
constructor(fields?: { sessionId?: string }) {
this.label = 'Conversation Chain'
this.name = 'conversationChain'
this.version = 3.0
this.type = 'ConversationChain'
this.icon = 'conv.svg'
this.category = 'Chains'
this.description = 'Chat models specific conversational chain with memory'
this.baseClasses = [this.type, ...getBaseClasses(ConversationChain)]
this.inputs = [
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'Memory',
name: 'memory',
type: 'BaseMemory'
},
{
label: 'Chat Prompt Template',
name: 'chatPromptTemplate',
type: 'ChatPromptTemplate',
description: 'Override existing prompt with Chat Prompt Template. Human Message must includes {input} variable',
optional: true
},
/* Deprecated
{
label: 'Document',
name: 'document',
type: 'Document',
description:
'Include whole document into the context window, if you get maximum context length error, please use model with higher context window like Claude 100k, or gpt4 32k',
optional: true,
list: true
},*/
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
},
{
label: 'System Message',
name: 'systemMessagePrompt',
type: 'string',
rows: 4,
description: 'If Chat Prompt Template is provided, this will be ignored',
additionalParams: true,
optional: true,
default: systemMessage,
placeholder: systemMessage
}
]
this.sessionId = fields?.sessionId
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const chain = prepareChain(nodeData, options, this.sessionId)
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | object> {
const memory = nodeData.inputs?.memory
const chain = await prepareChain(nodeData, options, this.sessionId)
const moderations = nodeData.inputs?.inputModeration as Moderation[]
const shouldStreamResponse = options.shouldStreamResponse
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
const chatId = options.chatId
if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the LLM chain
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
if (options.shouldStreamResponse) {
streamResponse(options.sseStreamer, options.chatId, e.message)
}
return formatResponse(e.message)
}
}
const loggerHandler = new ConsoleCallbackHandler(options.logger, options?.orgId)
const additionalCallback = await additionalCallbacks(nodeData, options)
let res = ''
let callbacks = [loggerHandler, ...additionalCallback]
if (process.env.DEBUG === 'true') {
callbacks.push(new LCConsoleCallbackHandler())
}
if (shouldStreamResponse) {
const handler = new CustomChainHandler(sseStreamer, chatId)
callbacks.push(handler)
res = await chain.invoke({ input }, { callbacks })
} else {
res = await chain.invoke({ input }, { callbacks })
}
await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: res,
type: 'apiMessage'
}
],
this.sessionId
)
return res
}
}
const prepareChatPrompt = (nodeData: INodeData, humanImageMessages: MessageContentImageUrl[]) => {
const memory = nodeData.inputs?.memory as FlowiseMemory
let prompt = nodeData.inputs?.systemMessagePrompt as string
prompt = transformBracesWithColon(prompt)
const chatPromptTemplate = nodeData.inputs?.chatPromptTemplate as ChatPromptTemplate
let model = nodeData.inputs?.model as BaseChatModel
if (chatPromptTemplate && chatPromptTemplate.promptMessages.length) {
const sysPrompt = chatPromptTemplate.promptMessages[0]
const humanPrompt = chatPromptTemplate.promptMessages[chatPromptTemplate.promptMessages.length - 1]
const messages = [sysPrompt, new MessagesPlaceholder(memory.memoryKey ?? 'chat_history'), humanPrompt]
// OpenAI works better when separate images into standalone human messages
if (model instanceof ChatOpenAI && humanImageMessages.length) {
messages.push(new HumanMessage({ content: [...humanImageMessages] }))
} else if (humanImageMessages.length) {
const lastMessage = messages.pop() as HumanMessagePromptTemplate
const template = (lastMessage.prompt as PromptTemplate).template as string
const msg = HumanMessagePromptTemplate.fromTemplate([
...humanImageMessages,
{
text: template
}
])
msg.inputVariables = lastMessage.inputVariables
messages.push(msg)
}
const chatPrompt = ChatPromptTemplate.fromMessages(messages)
if ((chatPromptTemplate as any).promptValues) {
// @ts-ignore
chatPrompt.promptValues = (chatPromptTemplate as any).promptValues
}
return chatPrompt
}
const messages: BaseMessagePromptTemplateLike[] = [
SystemMessagePromptTemplate.fromTemplate(prompt ? prompt : systemMessage),
new MessagesPlaceholder(memory.memoryKey ?? 'chat_history'),
HumanMessagePromptTemplate.fromTemplate(`{${inputKey}}`)
]
// OpenAI works better when separate images into standalone human messages
if (model instanceof ChatOpenAI && humanImageMessages.length) {
messages.push(new HumanMessage({ content: [...humanImageMessages] }))
} else if (humanImageMessages.length) {
messages.pop()
messages.push(HumanMessagePromptTemplate.fromTemplate([`{${inputKey}}`, ...humanImageMessages]))
}
const chatPrompt = ChatPromptTemplate.fromMessages(messages)
return chatPrompt
}
const prepareChain = async (nodeData: INodeData, options: ICommonObject, sessionId?: string) => {
let model = nodeData.inputs?.model as BaseChatModel
const memory = nodeData.inputs?.memory as FlowiseMemory
const memoryKey = memory.memoryKey ?? 'chat_history'
const prependMessages = options?.prependMessages
let messageContent: MessageContentImageUrl[] = []
if (llmSupportsVision(model)) {
messageContent = await addImagesToMessages(nodeData, options, model.multiModalOption)
const visionChatModel = model as IVisionChatModal
if (messageContent?.length) {
visionChatModel.setVisionModel()
} else {
// revert to previous values if image upload is empty
visionChatModel.revertToOriginalModel()
}
}
const chatPrompt = prepareChatPrompt(nodeData, messageContent)
let promptVariables = {}
const promptValuesRaw = (chatPrompt as any).promptValues
if (promptValuesRaw) {
const promptValues = handleEscapeCharacters(promptValuesRaw, true)
for (const val in promptValues) {
promptVariables = {
...promptVariables,
[val]: () => {
return promptValues[val]
}
}
}
}
const conversationChain = RunnableSequence.from([
{
[inputKey]: (input: { input: string }) => input.input,
[memoryKey]: async () => {
const history = await memory.getChatMessages(sessionId, true, prependMessages)
return history
},
...promptVariables
},
prepareChatPrompt(nodeData, messageContent),
model,
new StringOutputParser()
])
return conversationChain
}
module.exports = { nodeClass: ConversationChain_Chains }