Flowise/packages/components/nodes/chatmodels/ChatIBMWatsonx/ChatIBMWatsonx.ts

185 lines
7.0 KiB
TypeScript

import { BaseCache } from '@langchain/core/caches'
import { ChatWatsonx, ChatWatsonxInput } from '@langchain/community/chat_models/ibm'
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
interface WatsonxAuth {
watsonxAIApikey?: string
watsonxAIBearerToken?: string
watsonxAIUsername?: string
watsonxAIPassword?: string
watsonxAIUrl?: string
watsonxAIAuthType?: string
}
class ChatIBMWatsonx_ChatModels implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
description: string
baseClasses: string[]
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'ChatIBMWatsonx'
this.name = 'chatIBMWatsonx'
this.version = 2.0
this.type = 'ChatIBMWatsonx'
this.icon = 'ibm.png'
this.category = 'Chat Models'
this.description = 'Wrapper around IBM watsonx.ai foundation models'
this.baseClasses = [this.type, ...getBaseClasses(ChatWatsonx)]
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['ibmWatsonx']
}
this.inputs = [
{
label: 'Cache',
name: 'cache',
type: 'BaseCache',
optional: true
},
{
label: 'Model',
name: 'modelName',
type: 'string',
placeholder: 'mistralai/mistral-large'
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
step: 0.1,
default: 0.9,
optional: true
},
{
label: 'Streaming',
name: 'streaming',
type: 'boolean',
default: true,
optional: true,
additionalParams: true
},
{
label: 'Max Tokens',
name: 'maxTokens',
type: 'number',
step: 1,
optional: true,
additionalParams: true
},
{
label: 'Frequency Penalty',
name: 'frequencyPenalty',
type: 'number',
step: 1,
optional: true,
additionalParams: true,
description:
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim."
},
{
label: 'Log Probs',
name: 'logprobs',
type: 'boolean',
default: false,
optional: true,
additionalParams: true,
description:
'Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message.'
},
{
label: 'N',
name: 'n',
type: 'number',
step: 1,
default: 1,
optional: true,
additionalParams: true,
description:
'How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep n as 1 to minimize costs.'
},
{
label: 'Presence Penalty',
name: 'presencePenalty',
type: 'number',
step: 1,
default: 1,
optional: true,
additionalParams: true,
description:
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics."
},
{
label: 'Top P',
name: 'topP',
type: 'number',
step: 0.1,
default: 0.1,
optional: true,
additionalParams: true,
description:
'An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.'
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const cache = nodeData.inputs?.cache as BaseCache
const temperature = nodeData.inputs?.temperature as string
const modelName = nodeData.inputs?.modelName as string
const maxTokens = nodeData.inputs?.maxTokens as string
const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string
const logprobs = nodeData.inputs?.logprobs as boolean
const n = nodeData.inputs?.n as string
const presencePenalty = nodeData.inputs?.presencePenalty as string
const topP = nodeData.inputs?.topP as string
const streaming = nodeData.inputs?.streaming as boolean
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const version = getCredentialParam('version', credentialData, nodeData)
const serviceUrl = getCredentialParam('serviceUrl', credentialData, nodeData)
const projectId = getCredentialParam('projectId', credentialData, nodeData)
const watsonxAIAuthType = getCredentialParam('watsonxAIAuthType', credentialData, nodeData)
const watsonxAIApikey = getCredentialParam('watsonxAIApikey', credentialData, nodeData)
const watsonxAIBearerToken = getCredentialParam('watsonxAIBearerToken', credentialData, nodeData)
const auth = {
version,
serviceUrl,
projectId,
watsonxAIAuthType,
watsonxAIApikey,
watsonxAIBearerToken
}
const obj = {
...auth,
streaming: streaming ?? true,
model: modelName,
temperature: temperature ? parseFloat(temperature) : undefined
} as ChatWatsonxInput & WatsonxAuth
if (cache) obj.cache = cache
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
if (frequencyPenalty) obj.frequencyPenalty = parseInt(frequencyPenalty, 10)
if (logprobs) obj.logprobs = logprobs
if (n) obj.maxTokens = parseInt(n, 10)
if (presencePenalty) obj.presencePenalty = parseInt(presencePenalty, 10)
if (topP) obj.topP = parseFloat(topP)
const model = new ChatWatsonx(obj)
return model
}
}
module.exports = { nodeClass: ChatIBMWatsonx_ChatModels }