185 lines
7.0 KiB
TypeScript
185 lines
7.0 KiB
TypeScript
import { BaseCache } from '@langchain/core/caches'
|
|
import { ChatWatsonx, ChatWatsonxInput } from '@langchain/community/chat_models/ibm'
|
|
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
|
|
interface WatsonxAuth {
|
|
watsonxAIApikey?: string
|
|
watsonxAIBearerToken?: string
|
|
watsonxAIUsername?: string
|
|
watsonxAIPassword?: string
|
|
watsonxAIUrl?: string
|
|
watsonxAIAuthType?: string
|
|
}
|
|
|
|
class ChatIBMWatsonx_ChatModels implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
description: string
|
|
baseClasses: string[]
|
|
credential: INodeParams
|
|
inputs: INodeParams[]
|
|
|
|
constructor() {
|
|
this.label = 'ChatIBMWatsonx'
|
|
this.name = 'chatIBMWatsonx'
|
|
this.version = 2.0
|
|
this.type = 'ChatIBMWatsonx'
|
|
this.icon = 'ibm.png'
|
|
this.category = 'Chat Models'
|
|
this.description = 'Wrapper around IBM watsonx.ai foundation models'
|
|
this.baseClasses = [this.type, ...getBaseClasses(ChatWatsonx)]
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['ibmWatsonx']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Cache',
|
|
name: 'cache',
|
|
type: 'BaseCache',
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Model',
|
|
name: 'modelName',
|
|
type: 'string',
|
|
placeholder: 'mistralai/mistral-large'
|
|
},
|
|
{
|
|
label: 'Temperature',
|
|
name: 'temperature',
|
|
type: 'number',
|
|
step: 0.1,
|
|
default: 0.9,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Streaming',
|
|
name: 'streaming',
|
|
type: 'boolean',
|
|
default: true,
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Max Tokens',
|
|
name: 'maxTokens',
|
|
type: 'number',
|
|
step: 1,
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Frequency Penalty',
|
|
name: 'frequencyPenalty',
|
|
type: 'number',
|
|
step: 1,
|
|
optional: true,
|
|
additionalParams: true,
|
|
description:
|
|
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim."
|
|
},
|
|
{
|
|
label: 'Log Probs',
|
|
name: 'logprobs',
|
|
type: 'boolean',
|
|
default: false,
|
|
optional: true,
|
|
additionalParams: true,
|
|
description:
|
|
'Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message.'
|
|
},
|
|
{
|
|
label: 'N',
|
|
name: 'n',
|
|
type: 'number',
|
|
step: 1,
|
|
default: 1,
|
|
optional: true,
|
|
additionalParams: true,
|
|
description:
|
|
'How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep n as 1 to minimize costs.'
|
|
},
|
|
{
|
|
label: 'Presence Penalty',
|
|
name: 'presencePenalty',
|
|
type: 'number',
|
|
step: 1,
|
|
default: 1,
|
|
optional: true,
|
|
additionalParams: true,
|
|
description:
|
|
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics."
|
|
},
|
|
{
|
|
label: 'Top P',
|
|
name: 'topP',
|
|
type: 'number',
|
|
step: 0.1,
|
|
default: 0.1,
|
|
optional: true,
|
|
additionalParams: true,
|
|
description:
|
|
'An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.'
|
|
}
|
|
]
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const cache = nodeData.inputs?.cache as BaseCache
|
|
const temperature = nodeData.inputs?.temperature as string
|
|
const modelName = nodeData.inputs?.modelName as string
|
|
const maxTokens = nodeData.inputs?.maxTokens as string
|
|
const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string
|
|
const logprobs = nodeData.inputs?.logprobs as boolean
|
|
const n = nodeData.inputs?.n as string
|
|
const presencePenalty = nodeData.inputs?.presencePenalty as string
|
|
const topP = nodeData.inputs?.topP as string
|
|
const streaming = nodeData.inputs?.streaming as boolean
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const version = getCredentialParam('version', credentialData, nodeData)
|
|
const serviceUrl = getCredentialParam('serviceUrl', credentialData, nodeData)
|
|
const projectId = getCredentialParam('projectId', credentialData, nodeData)
|
|
const watsonxAIAuthType = getCredentialParam('watsonxAIAuthType', credentialData, nodeData)
|
|
const watsonxAIApikey = getCredentialParam('watsonxAIApikey', credentialData, nodeData)
|
|
const watsonxAIBearerToken = getCredentialParam('watsonxAIBearerToken', credentialData, nodeData)
|
|
|
|
const auth = {
|
|
version,
|
|
serviceUrl,
|
|
projectId,
|
|
watsonxAIAuthType,
|
|
watsonxAIApikey,
|
|
watsonxAIBearerToken
|
|
}
|
|
|
|
const obj = {
|
|
...auth,
|
|
streaming: streaming ?? true,
|
|
model: modelName,
|
|
temperature: temperature ? parseFloat(temperature) : undefined
|
|
} as ChatWatsonxInput & WatsonxAuth
|
|
|
|
if (cache) obj.cache = cache
|
|
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
|
|
if (frequencyPenalty) obj.frequencyPenalty = parseInt(frequencyPenalty, 10)
|
|
if (logprobs) obj.logprobs = logprobs
|
|
if (n) obj.maxTokens = parseInt(n, 10)
|
|
if (presencePenalty) obj.presencePenalty = parseInt(presencePenalty, 10)
|
|
if (topP) obj.topP = parseFloat(topP)
|
|
|
|
const model = new ChatWatsonx(obj)
|
|
return model
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: ChatIBMWatsonx_ChatModels }
|