Flowise/packages/components/nodes/agents/AirtableAgent/AirtableAgent.ts

259 lines
9.7 KiB
TypeScript

import axios from 'axios'
import { BaseLanguageModel } from '@langchain/core/language_models/base'
import { AgentExecutor } from 'langchain/agents'
import { LLMChain } from 'langchain/chains'
import { ICommonObject, INode, INodeData, INodeParams, PromptTemplate } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { LoadPyodide, finalSystemPrompt, systemPrompt } from './core'
import { checkInputs, Moderation } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
class Airtable_Agents implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'Airtable Agent'
this.name = 'airtableAgent'
this.version = 2.0
this.type = 'AgentExecutor'
this.category = 'Agents'
this.icon = 'airtable.svg'
this.description = 'Agent used to to answer queries on Airtable table'
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['airtableApi']
}
this.inputs = [
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'Base Id',
name: 'baseId',
type: 'string',
placeholder: 'app11RobdGoX0YNsC',
description:
'If your table URL looks like: https://airtable.com/app11RobdGoX0YNsC/tblJdmvbrgizbYICO/viw9UrP77Id0CE4ee, app11RovdGoX0YNsC is the base id'
},
{
label: 'Table Id',
name: 'tableId',
type: 'string',
placeholder: 'tblJdmvbrgizbYICO',
description:
'If your table URL looks like: https://airtable.com/app11RobdGoX0YNsC/tblJdmvbrgizbYICO/viw9UrP77Id0CE4ee, tblJdmvbrgizbYICO is the table id'
},
{
label: 'Return All',
name: 'returnAll',
type: 'boolean',
default: true,
additionalParams: true,
description: 'If all results should be returned or only up to a given limit'
},
{
label: 'Limit',
name: 'limit',
type: 'number',
default: 100,
additionalParams: true,
description: 'Number of results to return'
},
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
}
]
}
async init(): Promise<any> {
// Not used
return undefined
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | object> {
const model = nodeData.inputs?.model as BaseLanguageModel
const baseId = nodeData.inputs?.baseId as string
const tableId = nodeData.inputs?.tableId as string
const returnAll = nodeData.inputs?.returnAll as boolean
const limit = nodeData.inputs?.limit as string
const moderations = nodeData.inputs?.inputModeration as Moderation[]
if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the Vectara chain
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
//streamResponse(options.socketIO && options.socketIOClientId, e.message, options.socketIO, options.socketIOClientId)
return formatResponse(e.message)
}
}
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const accessToken = getCredentialParam('accessToken', credentialData, nodeData)
let airtableData: ICommonObject[] = []
if (returnAll) {
airtableData = await loadAll(baseId, tableId, accessToken)
} else {
airtableData = await loadLimit(limit ? parseInt(limit, 10) : 100, baseId, tableId, accessToken)
}
let base64String = Buffer.from(JSON.stringify(airtableData)).toString('base64')
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
const callbacks = await additionalCallbacks(nodeData, options)
const pyodide = await LoadPyodide()
// First load the csv file and get the dataframe dictionary of column types
// For example using titanic.csv: {'PassengerId': 'int64', 'Survived': 'int64', 'Pclass': 'int64', 'Name': 'object', 'Sex': 'object', 'Age': 'float64', 'SibSp': 'int64', 'Parch': 'int64', 'Ticket': 'object', 'Fare': 'float64', 'Cabin': 'object', 'Embarked': 'object'}
let dataframeColDict = ''
try {
const code = `import pandas as pd
import base64
import json
base64_string = "${base64String}"
decoded_data = base64.b64decode(base64_string)
json_data = json.loads(decoded_data)
df = pd.DataFrame(json_data)
my_dict = df.dtypes.astype(str).to_dict()
print(my_dict)
json.dumps(my_dict)`
dataframeColDict = await pyodide.runPythonAsync(code)
} catch (error) {
throw new Error(error)
}
// Then tell GPT to come out with ONLY python code
// For example: len(df), df[df['SibSp'] > 3]['PassengerId'].count()
let pythonCode = ''
if (dataframeColDict) {
const chain = new LLMChain({
llm: model,
prompt: PromptTemplate.fromTemplate(systemPrompt),
verbose: process.env.DEBUG === 'true' ? true : false
})
const inputs = {
dict: dataframeColDict,
question: input
}
const res = await chain.call(inputs, [loggerHandler, ...callbacks])
pythonCode = res?.text
// Regex to get rid of markdown code blocks syntax
pythonCode = pythonCode.replace(/^```[a-z]+\n|\n```$/gm, '')
}
// Then run the code using Pyodide
let finalResult = ''
if (pythonCode) {
try {
const code = `import pandas as pd\n${pythonCode}`
// TODO: get print console output
finalResult = await pyodide.runPythonAsync(code)
} catch (error) {
throw new Error(`Sorry, I'm unable to find answer for question: "${input}" using follwoing code: "${pythonCode}"`)
}
}
// Finally, return a complete answer
if (finalResult) {
const chain = new LLMChain({
llm: model,
prompt: PromptTemplate.fromTemplate(finalSystemPrompt),
verbose: process.env.DEBUG === 'true' ? true : false
})
const inputs = {
question: input,
answer: finalResult
}
if (options.socketIO && options.socketIOClientId) {
const result = await chain.call(inputs, [loggerHandler, handler, ...callbacks])
return result?.text
} else {
const result = await chain.call(inputs, [loggerHandler, ...callbacks])
return result?.text
}
}
return pythonCode
}
}
interface AirtableLoaderResponse {
records: AirtableLoaderPage[]
offset?: string
}
interface AirtableLoaderPage {
id: string
createdTime: string
fields: ICommonObject
}
const fetchAirtableData = async (url: string, params: ICommonObject, accessToken: string): Promise<AirtableLoaderResponse> => {
try {
const headers = {
Authorization: `Bearer ${accessToken}`,
'Content-Type': 'application/json',
Accept: 'application/json'
}
const response = await axios.get(url, { params, headers })
return response.data
} catch (error) {
throw new Error(`Failed to fetch ${url} from Airtable: ${error}`)
}
}
const loadAll = async (baseId: string, tableId: string, accessToken: string): Promise<ICommonObject[]> => {
const params: ICommonObject = { pageSize: 100 }
let data: AirtableLoaderResponse
let returnPages: AirtableLoaderPage[] = []
do {
data = await fetchAirtableData(`https://api.airtable.com/v0/${baseId}/${tableId}`, params, accessToken)
returnPages.push.apply(returnPages, data.records)
params.offset = data.offset
} while (data.offset !== undefined)
return data.records.map((page) => page.fields)
}
const loadLimit = async (limit: number, baseId: string, tableId: string, accessToken: string): Promise<ICommonObject[]> => {
const params = { maxRecords: limit }
const data = await fetchAirtableData(`https://api.airtable.com/v0/${baseId}/${tableId}`, params, accessToken)
if (data.records.length === 0) {
return []
}
return data.records.map((page) => page.fields)
}
module.exports = { nodeClass: Airtable_Agents }