Flowise/packages/components/nodes/vectorstores/Pinecone/Pinecone_LlamaIndex.ts

393 lines
13 KiB
TypeScript

import {
BaseNode,
Document,
Metadata,
IEmbedModel,
VectorStoreBase,
VectorStoreNoEmbedModel,
VectorStoreQuery,
VectorStoreQueryResult,
serviceContextFromDefaults,
storageContextFromDefaults,
VectorStoreIndex,
BaseEmbedding
} from 'llamaindex'
import { FetchResponse, Index, Pinecone, ScoredPineconeRecord } from '@pinecone-database/pinecone'
import { flatten } from 'lodash'
import { Document as LCDocument } from 'langchain/document'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { flattenObject, getCredentialData, getCredentialParam } from '../../../src/utils'
class PineconeLlamaIndex_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
tags: string[]
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Pinecone'
this.name = 'pineconeLlamaIndex'
this.version = 1.0
this.type = 'Pinecone'
this.icon = 'pinecone.svg'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity search upon query using Pinecone, a leading fully managed hosted vector database`
this.baseClasses = [this.type, 'VectorIndexRetriever']
this.tags = ['LlamaIndex']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['pineconeApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel_LlamaIndex'
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'BaseEmbedding_LlamaIndex'
},
{
label: 'Pinecone Index',
name: 'pineconeIndex',
type: 'string'
},
{
label: 'Pinecone Namespace',
name: 'pineconeNamespace',
type: 'string',
placeholder: 'my-first-namespace',
additionalParams: true,
optional: true
},
{
label: 'Pinecone Metadata Filter',
name: 'pineconeMetadataFilter',
type: 'json',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Pinecone Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Pinecone Vector Store Index',
name: 'vectorStore',
baseClasses: [this.type, 'VectorStoreIndex']
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const indexName = nodeData.inputs?.pineconeIndex as string
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
const docs = nodeData.inputs?.document as LCDocument[]
const embeddings = nodeData.inputs?.embeddings as BaseEmbedding
const model = nodeData.inputs?.model
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
const pcvs = new PineconeVectorStore({
indexName,
apiKey: pineconeApiKey,
namespace: pineconeNamespace,
embedModel: embeddings
})
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new LCDocument(flattenDocs[i]))
}
}
const llamadocs: Document[] = []
for (const doc of finalDocs) {
llamadocs.push(new Document({ text: doc.pageContent, metadata: doc.metadata }))
}
const serviceContext = serviceContextFromDefaults({ llm: model, embedModel: embeddings })
const storageContext = await storageContextFromDefaults({ vectorStore: pcvs })
try {
await VectorStoreIndex.fromDocuments(llamadocs, { serviceContext, storageContext })
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const indexName = nodeData.inputs?.pineconeIndex as string
const pineconeNamespace = nodeData.inputs?.pineconeNamespace as string
const pineconeMetadataFilter = nodeData.inputs?.pineconeMetadataFilter
const embeddings = nodeData.inputs?.embeddings as BaseEmbedding
const model = nodeData.inputs?.model
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const pineconeApiKey = getCredentialParam('pineconeApiKey', credentialData, nodeData)
const obj: PineconeParams = {
indexName,
apiKey: pineconeApiKey,
embedModel: embeddings
}
if (pineconeNamespace) obj.namespace = pineconeNamespace
let metadatafilter = {}
if (pineconeMetadataFilter) {
metadatafilter = typeof pineconeMetadataFilter === 'object' ? pineconeMetadataFilter : JSON.parse(pineconeMetadataFilter)
obj.queryFilter = metadatafilter
}
const pcvs = new PineconeVectorStore(obj)
const serviceContext = serviceContextFromDefaults({ llm: model, embedModel: embeddings })
const storageContext = await storageContextFromDefaults({ vectorStore: pcvs })
const index = await VectorStoreIndex.init({
nodes: [],
storageContext,
serviceContext
})
const output = nodeData.outputs?.output as string
if (output === 'retriever') {
const retriever = index.asRetriever()
retriever.similarityTopK = k
;(retriever as any).serviceContext = serviceContext
return retriever
} else if (output === 'vectorStore') {
;(index as any).k = k
if (metadatafilter) {
;(index as any).metadatafilter = metadatafilter
}
return index
}
return index
}
}
type PineconeParams = {
indexName: string
apiKey: string
namespace?: string
chunkSize?: number
queryFilter?: object
} & IEmbedModel
class PineconeVectorStore extends VectorStoreBase implements VectorStoreNoEmbedModel {
storesText: boolean = true
db?: Pinecone
indexName: string
apiKey: string
chunkSize: number
namespace?: string
queryFilter?: object
constructor(params: PineconeParams) {
super(params?.embedModel)
this.indexName = params?.indexName
this.apiKey = params?.apiKey
this.namespace = params?.namespace ?? ''
this.chunkSize = params?.chunkSize ?? Number.parseInt(process.env.PINECONE_CHUNK_SIZE ?? '100')
this.queryFilter = params?.queryFilter ?? {}
}
private async getDb(): Promise<Pinecone> {
if (!this.db) {
this.db = new Pinecone({
apiKey: this.apiKey
})
}
return Promise.resolve(this.db)
}
client() {
return this.getDb()
}
async index() {
const db: Pinecone = await this.getDb()
return db.Index(this.indexName)
}
async clearIndex() {
const db: Pinecone = await this.getDb()
return await db.index(this.indexName).deleteAll()
}
async add(embeddingResults: BaseNode<Metadata>[]): Promise<string[]> {
if (embeddingResults.length == 0) {
return Promise.resolve([])
}
const idx: Index = await this.index()
const nodes = embeddingResults.map(this.nodeToRecord)
for (let i = 0; i < nodes.length; i += this.chunkSize) {
const chunk = nodes.slice(i, i + this.chunkSize)
const result = await this.saveChunk(idx, chunk)
if (!result) {
return Promise.reject()
}
}
return Promise.resolve([])
}
protected async saveChunk(idx: Index, chunk: any) {
try {
const namespace = idx.namespace(this.namespace ?? '')
await namespace.upsert(chunk)
return true
} catch (err) {
return false
}
}
async delete(refDocId: string): Promise<void> {
const idx = await this.index()
const namespace = idx.namespace(this.namespace ?? '')
return namespace.deleteOne(refDocId)
}
async query(query: VectorStoreQuery): Promise<VectorStoreQueryResult> {
const queryOptions: any = {
vector: query.queryEmbedding,
topK: query.similarityTopK
}
if (this.queryFilter && Object.keys(this.queryFilter).length > 0) {
queryOptions.filter = this.queryFilter
}
const idx = await this.index()
const namespace = idx.namespace(this.namespace ?? '')
const results = await namespace.query(queryOptions)
const idList = results.matches.map((row) => row.id)
const records: FetchResponse<any> = await namespace.fetch(idList)
const rows = Object.values(records.records)
const nodes = rows.map((row) => {
return new Document({
id_: row.id,
text: this.textFromResultRow(row),
metadata: this.metaWithoutText(row.metadata),
embedding: row.values
})
})
const result = {
nodes: nodes,
similarities: results.matches.map((row) => row.score || 999),
ids: results.matches.map((row) => row.id)
}
return Promise.resolve(result)
}
/**
* Required by VectorStore interface. Currently ignored.
*/
persist(): Promise<void> {
return Promise.resolve()
}
textFromResultRow(row: ScoredPineconeRecord<Metadata>): string {
return row.metadata?.text ?? ''
}
metaWithoutText(meta: Metadata): any {
return Object.keys(meta)
.filter((key) => key != 'text')
.reduce((acc: any, key: string) => {
acc[key] = meta[key]
return acc
}, {})
}
nodeToRecord(node: BaseNode<Metadata>) {
let id: any = node.id_.length ? node.id_ : null
return {
id: id,
values: node.getEmbedding(),
metadata: {
...cleanupMetadata(node.metadata),
text: (node as any).text
}
}
}
}
const cleanupMetadata = (nodeMetadata: ICommonObject) => {
// Pinecone doesn't support nested objects, so we flatten them
const documentMetadata: any = { ...nodeMetadata }
// preserve string arrays which are allowed
const stringArrays: Record<string, string[]> = {}
for (const key of Object.keys(documentMetadata)) {
if (Array.isArray(documentMetadata[key]) && documentMetadata[key].every((el: any) => typeof el === 'string')) {
stringArrays[key] = documentMetadata[key]
delete documentMetadata[key]
}
}
const metadata: {
[key: string]: string | number | boolean | string[] | null
} = {
...flattenObject(documentMetadata),
...stringArrays
}
// Pinecone doesn't support null values, so we remove them
for (const key of Object.keys(metadata)) {
if (metadata[key] == null) {
delete metadata[key]
} else if (typeof metadata[key] === 'object' && Object.keys(metadata[key] as unknown as object).length === 0) {
delete metadata[key]
}
}
return metadata
}
module.exports = { nodeClass: PineconeLlamaIndex_VectorStores }