Flowise/packages/components/nodes/vectorstores/Elasticsearch/Elasticsearch.ts

247 lines
8.7 KiB
TypeScript

import { flatten } from 'lodash'
import { Client, ClientOptions } from '@elastic/elasticsearch'
import { Document } from 'langchain/document'
import { Embeddings } from 'langchain/embeddings/base'
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
class Elasticsearch_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Elasticsearch'
this.name = 'elasticsearch'
this.version = 1.0
this.description =
'Upsert embedded data and perform similarity search upon query using Elasticsearch, a distributed search and analytics engine'
this.type = 'Elasticsearch'
this.icon = 'elasticsearch.png'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'NEW'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<INDEX_NAME>',
type: 'string'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Similarity',
name: 'similarity',
description: 'Similarity measure used in Elasticsearch.',
type: 'options',
default: 'l2_norm',
options: [
{
label: 'l2_norm',
name: 'l2_norm'
},
{
label: 'dot_product',
name: 'dot_product'
},
{
label: 'cosine',
name: 'cosine'
}
],
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Elasticsearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Elasticsearch Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
const cloudId = getCredentialParam('cloudId', credentialData, nodeData)
const indexName = nodeData.inputs?.indexName as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
const docs = nodeData.inputs?.document as Document[]
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
// The following code is a workaround for a bug (Langchain Issue #1589) in the underlying library.
// Store does not support object in metadata and fail silently
finalDocs.forEach((d) => {
delete d.metadata.pdf
delete d.metadata.loc
})
// end of workaround
const elasticSearchClientArgs = prepareClientArgs(endPoint, cloudId, credentialData, nodeData, similarityMeasure, indexName)
const vectorStore = new ElasticVectorSearch(embeddings, elasticSearchClientArgs)
try {
await vectorStore.addDocuments(finalDocs)
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
const cloudId = getCredentialParam('cloudId', credentialData, nodeData)
const indexName = nodeData.inputs?.indexName as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
const elasticSearchClientArgs = prepareClientArgs(endPoint, cloudId, credentialData, nodeData, similarityMeasure, indexName)
const vectorStore = await ElasticVectorSearch.fromExistingIndex(embeddings, elasticSearchClientArgs)
if (output === 'retriever') {
return vectorStore.asRetriever(k)
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
const prepareConnectionOptions = (
endPoint: string | undefined,
cloudId: string | undefined,
credentialData: ICommonObject,
nodeData: INodeData
) => {
let elasticSearchClientOptions: ClientOptions = {}
if (endPoint) {
let apiKey = getCredentialParam('apiKey', credentialData, nodeData)
elasticSearchClientOptions = {
node: endPoint,
auth: {
apiKey: apiKey
}
}
} else if (cloudId) {
let username = getCredentialParam('username', credentialData, nodeData)
let password = getCredentialParam('password', credentialData, nodeData)
if (cloudId.startsWith('http')) {
elasticSearchClientOptions = {
node: cloudId,
auth: {
username: username,
password: password
},
tls: {
rejectUnauthorized: false
}
}
} else {
elasticSearchClientOptions = {
cloud: {
id: cloudId
},
auth: {
username: username,
password: password
}
}
}
}
return elasticSearchClientOptions
}
const prepareClientArgs = (
endPoint: string | undefined,
cloudId: string | undefined,
credentialData: ICommonObject,
nodeData: INodeData,
similarityMeasure: string,
indexName: string
) => {
let elasticSearchClientOptions = prepareConnectionOptions(endPoint, cloudId, credentialData, nodeData)
let vectorSearchOptions = {}
switch (similarityMeasure) {
case 'dot_product':
vectorSearchOptions = {
similarity: 'dot_product'
}
break
case 'cosine':
vectorSearchOptions = {
similarity: 'cosine'
}
break
default:
vectorSearchOptions = {
similarity: 'l2_norm'
}
}
const elasticSearchClientArgs: ElasticClientArgs = {
client: new Client(elasticSearchClientOptions),
indexName: indexName,
vectorSearchOptions: vectorSearchOptions
}
return elasticSearchClientArgs
}
module.exports = { nodeClass: Elasticsearch_VectorStores }