247 lines
8.7 KiB
TypeScript
247 lines
8.7 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { Client, ClientOptions } from '@elastic/elasticsearch'
|
|
import { Document } from 'langchain/document'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
|
|
class Elasticsearch_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Elasticsearch'
|
|
this.name = 'elasticsearch'
|
|
this.version = 1.0
|
|
this.description =
|
|
'Upsert embedded data and perform similarity search upon query using Elasticsearch, a distributed search and analytics engine'
|
|
this.type = 'Elasticsearch'
|
|
this.icon = 'elasticsearch.png'
|
|
this.category = 'Vector Stores'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'NEW'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
placeholder: '<INDEX_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Similarity',
|
|
name: 'similarity',
|
|
description: 'Similarity measure used in Elasticsearch.',
|
|
type: 'options',
|
|
default: 'l2_norm',
|
|
options: [
|
|
{
|
|
label: 'l2_norm',
|
|
name: 'l2_norm'
|
|
},
|
|
{
|
|
label: 'dot_product',
|
|
name: 'dot_product'
|
|
},
|
|
{
|
|
label: 'cosine',
|
|
name: 'cosine'
|
|
}
|
|
],
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Elasticsearch Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Elasticsearch Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
|
|
const cloudId = getCredentialParam('cloudId', credentialData, nodeData)
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
|
|
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
// The following code is a workaround for a bug (Langchain Issue #1589) in the underlying library.
|
|
// Store does not support object in metadata and fail silently
|
|
finalDocs.forEach((d) => {
|
|
delete d.metadata.pdf
|
|
delete d.metadata.loc
|
|
})
|
|
// end of workaround
|
|
|
|
const elasticSearchClientArgs = prepareClientArgs(endPoint, cloudId, credentialData, nodeData, similarityMeasure, indexName)
|
|
const vectorStore = new ElasticVectorSearch(embeddings, elasticSearchClientArgs)
|
|
|
|
try {
|
|
await vectorStore.addDocuments(finalDocs)
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
|
|
const cloudId = getCredentialParam('cloudId', credentialData, nodeData)
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const topK = nodeData.inputs?.topK as string
|
|
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
|
|
const k = topK ? parseFloat(topK) : 4
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
const elasticSearchClientArgs = prepareClientArgs(endPoint, cloudId, credentialData, nodeData, similarityMeasure, indexName)
|
|
const vectorStore = await ElasticVectorSearch.fromExistingIndex(embeddings, elasticSearchClientArgs)
|
|
|
|
if (output === 'retriever') {
|
|
return vectorStore.asRetriever(k)
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
const prepareConnectionOptions = (
|
|
endPoint: string | undefined,
|
|
cloudId: string | undefined,
|
|
credentialData: ICommonObject,
|
|
nodeData: INodeData
|
|
) => {
|
|
let elasticSearchClientOptions: ClientOptions = {}
|
|
if (endPoint) {
|
|
let apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
elasticSearchClientOptions = {
|
|
node: endPoint,
|
|
auth: {
|
|
apiKey: apiKey
|
|
}
|
|
}
|
|
} else if (cloudId) {
|
|
let username = getCredentialParam('username', credentialData, nodeData)
|
|
let password = getCredentialParam('password', credentialData, nodeData)
|
|
if (cloudId.startsWith('http')) {
|
|
elasticSearchClientOptions = {
|
|
node: cloudId,
|
|
auth: {
|
|
username: username,
|
|
password: password
|
|
},
|
|
tls: {
|
|
rejectUnauthorized: false
|
|
}
|
|
}
|
|
} else {
|
|
elasticSearchClientOptions = {
|
|
cloud: {
|
|
id: cloudId
|
|
},
|
|
auth: {
|
|
username: username,
|
|
password: password
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return elasticSearchClientOptions
|
|
}
|
|
|
|
const prepareClientArgs = (
|
|
endPoint: string | undefined,
|
|
cloudId: string | undefined,
|
|
credentialData: ICommonObject,
|
|
nodeData: INodeData,
|
|
similarityMeasure: string,
|
|
indexName: string
|
|
) => {
|
|
let elasticSearchClientOptions = prepareConnectionOptions(endPoint, cloudId, credentialData, nodeData)
|
|
let vectorSearchOptions = {}
|
|
switch (similarityMeasure) {
|
|
case 'dot_product':
|
|
vectorSearchOptions = {
|
|
similarity: 'dot_product'
|
|
}
|
|
break
|
|
case 'cosine':
|
|
vectorSearchOptions = {
|
|
similarity: 'cosine'
|
|
}
|
|
break
|
|
default:
|
|
vectorSearchOptions = {
|
|
similarity: 'l2_norm'
|
|
}
|
|
}
|
|
const elasticSearchClientArgs: ElasticClientArgs = {
|
|
client: new Client(elasticSearchClientOptions),
|
|
indexName: indexName,
|
|
vectorSearchOptions: vectorSearchOptions
|
|
}
|
|
return elasticSearchClientArgs
|
|
}
|
|
|
|
module.exports = { nodeClass: Elasticsearch_VectorStores }
|