Flowise/packages/components/nodes/memory/ConversationSummaryBufferMe.../ConversationSummaryBufferMe...

202 lines
7.0 KiB
TypeScript

import {
IMessage,
IDatabaseEntity,
INode,
INodeData,
INodeParams,
MemoryMethods,
ICommonObject,
FlowiseSummaryBufferMemory
} from '../../../src/Interface'
import { getBaseClasses, mapChatMessageToBaseMessage } from '../../../src/utils'
import { BaseLanguageModel } from '@langchain/core/language_models/base'
import { BaseMessage, getBufferString, HumanMessage } from '@langchain/core/messages'
import { ConversationSummaryBufferMemory, ConversationSummaryBufferMemoryInput } from 'langchain/memory'
import { DataSource } from 'typeorm'
import { ChatAnthropic } from '../../chatmodels/ChatAnthropic/FlowiseChatAnthropic'
class ConversationSummaryBufferMemory_Memory implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
constructor() {
this.label = 'Conversation Summary Buffer Memory'
this.name = 'conversationSummaryBufferMemory'
this.version = 1.0
this.type = 'ConversationSummaryBufferMemory'
this.icon = 'memory.svg'
this.category = 'Memory'
this.description = 'Uses token length to decide when to summarize conversations'
this.baseClasses = [this.type, ...getBaseClasses(ConversationSummaryBufferMemory)]
this.inputs = [
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'Max Token Limit',
name: 'maxTokenLimit',
type: 'number',
default: 2000,
description: 'Summarize conversations once token limit is reached. Default to 2000'
},
{
label: 'Session Id',
name: 'sessionId',
type: 'string',
description:
'If not specified, a random id will be used. Learn <a target="_blank" href="https://docs.flowiseai.com/memory#ui-and-embedded-chat">more</a>',
default: '',
optional: true,
additionalParams: true
},
{
label: 'Memory Key',
name: 'memoryKey',
type: 'string',
default: 'chat_history',
additionalParams: true
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const model = nodeData.inputs?.model as BaseLanguageModel
const _maxTokenLimit = nodeData.inputs?.maxTokenLimit as string
const maxTokenLimit = _maxTokenLimit ? parseInt(_maxTokenLimit, 10) : 2000
const sessionId = nodeData.inputs?.sessionId as string
const memoryKey = (nodeData.inputs?.memoryKey as string) ?? 'chat_history'
const appDataSource = options.appDataSource as DataSource
const databaseEntities = options.databaseEntities as IDatabaseEntity
const chatflowid = options.chatflowid as string
const obj: ConversationSummaryBufferMemoryInput & BufferMemoryExtendedInput = {
llm: model,
sessionId,
memoryKey,
maxTokenLimit,
returnMessages: true,
appDataSource,
databaseEntities,
chatflowid
}
return new ConversationSummaryBufferMemoryExtended(obj)
}
}
interface BufferMemoryExtendedInput {
sessionId: string
appDataSource: DataSource
databaseEntities: IDatabaseEntity
chatflowid: string
}
class ConversationSummaryBufferMemoryExtended extends FlowiseSummaryBufferMemory implements MemoryMethods {
appDataSource: DataSource
databaseEntities: IDatabaseEntity
chatflowid: string
sessionId = ''
constructor(fields: ConversationSummaryBufferMemoryInput & BufferMemoryExtendedInput) {
super(fields)
this.sessionId = fields.sessionId
this.appDataSource = fields.appDataSource
this.databaseEntities = fields.databaseEntities
this.chatflowid = fields.chatflowid
}
async getChatMessages(
overrideSessionId = '',
returnBaseMessages = false,
prependMessages?: IMessage[]
): Promise<IMessage[] | BaseMessage[]> {
const id = overrideSessionId ? overrideSessionId : this.sessionId
if (!id) return []
let chatMessage = await this.appDataSource.getRepository(this.databaseEntities['ChatMessage']).find({
where: {
sessionId: id,
chatflowid: this.chatflowid
},
order: {
createdDate: 'ASC'
}
})
if (prependMessages?.length) {
chatMessage.unshift(...prependMessages)
}
let baseMessages = await mapChatMessageToBaseMessage(chatMessage)
// Prune baseMessages if it exceeds max token limit
if (this.movingSummaryBuffer) {
baseMessages = [new this.summaryChatMessageClass(this.movingSummaryBuffer), ...baseMessages]
}
let currBufferLength = 0
if (this.llm && typeof this.llm !== 'string') {
currBufferLength = await this.llm.getNumTokens(getBufferString(baseMessages, this.humanPrefix, this.aiPrefix))
if (currBufferLength > this.maxTokenLimit) {
const prunedMemory = []
while (currBufferLength > this.maxTokenLimit) {
const poppedMessage = baseMessages.shift()
if (poppedMessage) {
prunedMemory.push(poppedMessage)
currBufferLength = await this.llm.getNumTokens(getBufferString(baseMessages, this.humanPrefix, this.aiPrefix))
}
}
this.movingSummaryBuffer = await this.predictNewSummary(prunedMemory, this.movingSummaryBuffer)
}
}
// ----------- Finished Pruning ---------------
if (this.movingSummaryBuffer) {
// Anthropic doesn't support multiple system messages
if (this.llm instanceof ChatAnthropic) {
baseMessages = [new HumanMessage(`Below is the summarized conversation:\n\n${this.movingSummaryBuffer}`), ...baseMessages]
} else {
baseMessages = [new this.summaryChatMessageClass(this.movingSummaryBuffer), ...baseMessages]
}
}
if (returnBaseMessages) {
return baseMessages
}
let returnIMessages: IMessage[] = []
for (const m of baseMessages) {
returnIMessages.push({
message: m.content as string,
type: m._getType() === 'human' ? 'userMessage' : 'apiMessage'
})
}
return returnIMessages
}
async addChatMessages(): Promise<void> {
// adding chat messages is done on server level
return
}
async clearChatMessages(): Promise<void> {
// clearing chat messages is done on server level
return
}
}
module.exports = { nodeClass: ConversationSummaryBufferMemory_Memory }