Flowise/packages/components/nodes/agentflow/LLM/LLM.ts

1014 lines
41 KiB
TypeScript

import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { ICommonObject, IMessage, INode, INodeData, INodeOptionsValue, INodeParams, IServerSideEventStreamer } from '../../../src/Interface'
import { AIMessageChunk, BaseMessageLike, MessageContentText } from '@langchain/core/messages'
import { DEFAULT_SUMMARIZER_TEMPLATE } from '../prompt'
import { z } from 'zod'
import { AnalyticHandler } from '../../../src/handler'
import { ILLMMessage, IStructuredOutput } from '../Interface.Agentflow'
import {
getPastChatHistoryImageMessages,
getUniqueImageMessages,
processMessagesWithImages,
replaceBase64ImagesWithFileReferences,
updateFlowState
} from '../utils'
import { processTemplateVariables } from '../../../src/utils'
import { flatten } from 'lodash'
class LLM_Agentflow implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
color: string
baseClasses: string[]
documentation?: string
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'LLM'
this.name = 'llmAgentflow'
this.version = 1.0
this.type = 'LLM'
this.category = 'Agent Flows'
this.description = 'Large language models to analyze user-provided inputs and generate responses'
this.color = '#64B5F6'
this.baseClasses = [this.type]
this.inputs = [
{
label: 'Model',
name: 'llmModel',
type: 'asyncOptions',
loadMethod: 'listModels',
loadConfig: true
},
{
label: 'Messages',
name: 'llmMessages',
type: 'array',
optional: true,
acceptVariable: true,
array: [
{
label: 'Role',
name: 'role',
type: 'options',
options: [
{
label: 'System',
name: 'system'
},
{
label: 'Assistant',
name: 'assistant'
},
{
label: 'Developer',
name: 'developer'
},
{
label: 'User',
name: 'user'
}
]
},
{
label: 'Content',
name: 'content',
type: 'string',
acceptVariable: true,
generateInstruction: true,
rows: 4
}
]
},
{
label: 'Enable Memory',
name: 'llmEnableMemory',
type: 'boolean',
description: 'Enable memory for the conversation thread',
default: true,
optional: true
},
{
label: 'Memory Type',
name: 'llmMemoryType',
type: 'options',
options: [
{
label: 'All Messages',
name: 'allMessages',
description: 'Retrieve all messages from the conversation'
},
{
label: 'Window Size',
name: 'windowSize',
description: 'Uses a fixed window size to surface the last N messages'
},
{
label: 'Conversation Summary',
name: 'conversationSummary',
description: 'Summarizes the whole conversation'
},
{
label: 'Conversation Summary Buffer',
name: 'conversationSummaryBuffer',
description: 'Summarize conversations once token limit is reached. Default to 2000'
}
],
optional: true,
default: 'allMessages',
show: {
llmEnableMemory: true
}
},
{
label: 'Window Size',
name: 'llmMemoryWindowSize',
type: 'number',
default: '20',
description: 'Uses a fixed window size to surface the last N messages',
show: {
llmMemoryType: 'windowSize'
}
},
{
label: 'Max Token Limit',
name: 'llmMemoryMaxTokenLimit',
type: 'number',
default: '2000',
description: 'Summarize conversations once token limit is reached. Default to 2000',
show: {
llmMemoryType: 'conversationSummaryBuffer'
}
},
{
label: 'Input Message',
name: 'llmUserMessage',
type: 'string',
description: 'Add an input message as user message at the end of the conversation',
rows: 4,
optional: true,
acceptVariable: true,
show: {
llmEnableMemory: true
}
},
{
label: 'Return Response As',
name: 'llmReturnResponseAs',
type: 'options',
options: [
{
label: 'User Message',
name: 'userMessage'
},
{
label: 'Assistant Message',
name: 'assistantMessage'
}
],
default: 'userMessage'
},
{
label: 'JSON Structured Output',
name: 'llmStructuredOutput',
description: 'Instruct the LLM to give output in a JSON structured schema',
type: 'array',
optional: true,
acceptVariable: true,
array: [
{
label: 'Key',
name: 'key',
type: 'string'
},
{
label: 'Type',
name: 'type',
type: 'options',
options: [
{
label: 'String',
name: 'string'
},
{
label: 'String Array',
name: 'stringArray'
},
{
label: 'Number',
name: 'number'
},
{
label: 'Boolean',
name: 'boolean'
},
{
label: 'Enum',
name: 'enum'
},
{
label: 'JSON Array',
name: 'jsonArray'
}
]
},
{
label: 'Enum Values',
name: 'enumValues',
type: 'string',
placeholder: 'value1, value2, value3',
description: 'Enum values. Separated by comma',
optional: true,
show: {
'llmStructuredOutput[$index].type': 'enum'
}
},
{
label: 'JSON Schema',
name: 'jsonSchema',
type: 'code',
placeholder: `{
"answer": {
"type": "string",
"description": "Value of the answer"
},
"reason": {
"type": "string",
"description": "Reason for the answer"
},
"optional": {
"type": "boolean"
},
"count": {
"type": "number"
},
"children": {
"type": "array",
"items": {
"type": "object",
"properties": {
"value": {
"type": "string",
"description": "Value of the children's answer"
}
}
}
}
}`,
description: 'JSON schema for the structured output',
optional: true,
hideCodeExecute: true,
show: {
'llmStructuredOutput[$index].type': 'jsonArray'
}
},
{
label: 'Description',
name: 'description',
type: 'string',
placeholder: 'Description of the key'
}
]
},
{
label: 'Update Flow State',
name: 'llmUpdateState',
description: 'Update runtime state during the execution of the workflow',
type: 'array',
optional: true,
acceptVariable: true,
array: [
{
label: 'Key',
name: 'key',
type: 'asyncOptions',
loadMethod: 'listRuntimeStateKeys',
freeSolo: true
},
{
label: 'Value',
name: 'value',
type: 'string',
acceptVariable: true,
acceptNodeOutputAsVariable: true
}
]
}
]
}
//@ts-ignore
loadMethods = {
async listModels(_: INodeData, options: ICommonObject): Promise<INodeOptionsValue[]> {
const componentNodes = options.componentNodes as {
[key: string]: INode
}
const returnOptions: INodeOptionsValue[] = []
for (const nodeName in componentNodes) {
const componentNode = componentNodes[nodeName]
if (componentNode.category === 'Chat Models') {
if (componentNode.tags?.includes('LlamaIndex')) {
continue
}
returnOptions.push({
label: componentNode.label,
name: nodeName,
imageSrc: componentNode.icon
})
}
}
return returnOptions
},
async listRuntimeStateKeys(_: INodeData, options: ICommonObject): Promise<INodeOptionsValue[]> {
const previousNodes = options.previousNodes as ICommonObject[]
const startAgentflowNode = previousNodes.find((node) => node.name === 'startAgentflow')
const state = startAgentflowNode?.inputs?.startState as ICommonObject[]
return state.map((item) => ({ label: item.key, name: item.key }))
}
}
async run(nodeData: INodeData, input: string | Record<string, any>, options: ICommonObject): Promise<any> {
let llmIds: ICommonObject | undefined
let analyticHandlers = options.analyticHandlers as AnalyticHandler
try {
const abortController = options.abortController as AbortController
// Extract input parameters
const model = nodeData.inputs?.llmModel as string
const modelConfig = nodeData.inputs?.llmModelConfig as ICommonObject
if (!model) {
throw new Error('Model is required')
}
// Extract memory and configuration options
const enableMemory = nodeData.inputs?.llmEnableMemory as boolean
const memoryType = nodeData.inputs?.llmMemoryType as string
const userMessage = nodeData.inputs?.llmUserMessage as string
const _llmUpdateState = nodeData.inputs?.llmUpdateState
const _llmStructuredOutput = nodeData.inputs?.llmStructuredOutput
const llmMessages = (nodeData.inputs?.llmMessages as unknown as ILLMMessage[]) ?? []
// Extract runtime state and history
const state = options.agentflowRuntime?.state as ICommonObject
const pastChatHistory = (options.pastChatHistory as BaseMessageLike[]) ?? []
const runtimeChatHistory = (options.agentflowRuntime?.chatHistory as BaseMessageLike[]) ?? []
const prependedChatHistory = options.prependedChatHistory as IMessage[]
const chatId = options.chatId as string
// Initialize the LLM model instance
const nodeInstanceFilePath = options.componentNodes[model].filePath as string
const nodeModule = await import(nodeInstanceFilePath)
const newLLMNodeInstance = new nodeModule.nodeClass()
const newNodeData = {
...nodeData,
credential: modelConfig['FLOWISE_CREDENTIAL_ID'],
inputs: {
...nodeData.inputs,
...modelConfig
}
}
let llmNodeInstance = (await newLLMNodeInstance.init(newNodeData, '', options)) as BaseChatModel
// Prepare messages array
const messages: BaseMessageLike[] = []
// Use to store messages with image file references as we do not want to store the base64 data into database
let runtimeImageMessagesWithFileRef: BaseMessageLike[] = []
// Use to keep track of past messages with image file references
let pastImageMessagesWithFileRef: BaseMessageLike[] = []
// Prepend history ONLY if it is the first node
if (prependedChatHistory.length > 0 && !runtimeChatHistory.length) {
for (const msg of prependedChatHistory) {
const role: string = msg.role === 'apiMessage' ? 'assistant' : 'user'
const content: string = msg.content ?? ''
messages.push({
role,
content
})
}
}
for (const msg of llmMessages) {
const role = msg.role
const content = msg.content
if (role && content) {
if (role === 'system') {
messages.unshift({ role, content })
} else {
messages.push({ role, content })
}
}
}
// Handle memory management if enabled
if (enableMemory) {
await this.handleMemory({
messages,
memoryType,
pastChatHistory,
runtimeChatHistory,
llmNodeInstance,
nodeData,
userMessage,
input,
abortController,
options,
modelConfig,
runtimeImageMessagesWithFileRef,
pastImageMessagesWithFileRef
})
} else if (!runtimeChatHistory.length) {
/*
* If this is the first node:
* - Add images to messages if exist
* - Add user message if it does not exist in the llmMessages array
*/
if (options.uploads) {
const imageContents = await getUniqueImageMessages(options, messages, modelConfig)
if (imageContents) {
const { imageMessageWithBase64, imageMessageWithFileRef } = imageContents
messages.push(imageMessageWithBase64)
runtimeImageMessagesWithFileRef.push(imageMessageWithFileRef)
}
}
if (input && typeof input === 'string' && !llmMessages.some((msg) => msg.role === 'user')) {
messages.push({
role: 'user',
content: input
})
}
}
delete nodeData.inputs?.llmMessages
// Configure structured output if specified
const isStructuredOutput = _llmStructuredOutput && Array.isArray(_llmStructuredOutput) && _llmStructuredOutput.length > 0
if (isStructuredOutput) {
llmNodeInstance = this.configureStructuredOutput(llmNodeInstance, _llmStructuredOutput)
}
// Initialize response and determine if streaming is possible
let response: AIMessageChunk = new AIMessageChunk('')
const isLastNode = options.isLastNode as boolean
const isStreamable = isLastNode && options.sseStreamer !== undefined && modelConfig?.streaming !== false && !isStructuredOutput
// Start analytics
if (analyticHandlers && options.parentTraceIds) {
const llmLabel = options?.componentNodes?.[model]?.label || model
llmIds = await analyticHandlers.onLLMStart(llmLabel, messages, options.parentTraceIds)
}
// Track execution time
const startTime = Date.now()
const sseStreamer: IServerSideEventStreamer | undefined = options.sseStreamer
if (isStreamable) {
response = await this.handleStreamingResponse(sseStreamer, llmNodeInstance, messages, chatId, abortController)
} else {
response = await llmNodeInstance.invoke(messages, { signal: abortController?.signal })
// Stream whole response back to UI if this is the last node
if (isLastNode && options.sseStreamer) {
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
let finalResponse = ''
if (response.content && Array.isArray(response.content)) {
finalResponse = response.content.map((item: any) => item.text).join('\n')
} else if (response.content && typeof response.content === 'string') {
finalResponse = response.content
} else {
finalResponse = JSON.stringify(response, null, 2)
}
sseStreamer.streamTokenEvent(chatId, finalResponse)
}
}
// Calculate execution time
const endTime = Date.now()
const timeDelta = endTime - startTime
// Update flow state if needed
let newState = { ...state }
if (_llmUpdateState && Array.isArray(_llmUpdateState) && _llmUpdateState.length > 0) {
newState = updateFlowState(state, _llmUpdateState)
}
// Clean up empty inputs
for (const key in nodeData.inputs) {
if (nodeData.inputs[key] === '') {
delete nodeData.inputs[key]
}
}
// Prepare final response and output object
let finalResponse = ''
if (response.content && Array.isArray(response.content)) {
finalResponse = response.content.map((item: any) => item.text).join('\n')
} else if (response.content && typeof response.content === 'string') {
finalResponse = response.content
} else {
finalResponse = JSON.stringify(response, null, 2)
}
const output = this.prepareOutputObject(response, finalResponse, startTime, endTime, timeDelta, isStructuredOutput)
// End analytics tracking
if (analyticHandlers && llmIds) {
await analyticHandlers.onLLMEnd(llmIds, finalResponse)
}
// Send additional streaming events if needed
if (isStreamable) {
this.sendStreamingEvents(options, chatId, response)
}
// Process template variables in state
newState = processTemplateVariables(newState, finalResponse)
// Replace the actual messages array with one that includes the file references for images instead of base64 data
const messagesWithFileReferences = replaceBase64ImagesWithFileReferences(
messages,
runtimeImageMessagesWithFileRef,
pastImageMessagesWithFileRef
)
// Only add to runtime chat history if this is the first node
const inputMessages = []
if (!runtimeChatHistory.length) {
if (runtimeImageMessagesWithFileRef.length) {
inputMessages.push(...runtimeImageMessagesWithFileRef)
}
if (input && typeof input === 'string') {
if (!enableMemory) {
if (!llmMessages.some((msg) => msg.role === 'user')) {
inputMessages.push({ role: 'user', content: input })
} else {
llmMessages.map((msg) => {
if (msg.role === 'user') {
inputMessages.push({ role: 'user', content: msg.content })
}
})
}
} else {
inputMessages.push({ role: 'user', content: input })
}
}
}
const returnResponseAs = nodeData.inputs?.llmReturnResponseAs as string
let returnRole = 'user'
if (returnResponseAs === 'assistantMessage') {
returnRole = 'assistant'
}
// Prepare and return the final output
return {
id: nodeData.id,
name: this.name,
input: {
messages: messagesWithFileReferences,
...nodeData.inputs
},
output,
state: newState,
chatHistory: [
...inputMessages,
// LLM response
{
role: returnRole,
content: finalResponse,
name: nodeData?.label ? nodeData?.label.toLowerCase().replace(/\s/g, '_').trim() : nodeData?.id
}
]
}
} catch (error) {
if (options.analyticHandlers && llmIds) {
await options.analyticHandlers.onLLMError(llmIds, error instanceof Error ? error.message : String(error))
}
if (error instanceof Error && error.message === 'Aborted') {
throw error
}
throw new Error(`Error in LLM node: ${error instanceof Error ? error.message : String(error)}`)
}
}
/**
* Handles memory management based on the specified memory type
*/
private async handleMemory({
messages,
memoryType,
pastChatHistory,
runtimeChatHistory,
llmNodeInstance,
nodeData,
userMessage,
input,
abortController,
options,
modelConfig,
runtimeImageMessagesWithFileRef,
pastImageMessagesWithFileRef
}: {
messages: BaseMessageLike[]
memoryType: string
pastChatHistory: BaseMessageLike[]
runtimeChatHistory: BaseMessageLike[]
llmNodeInstance: BaseChatModel
nodeData: INodeData
userMessage: string
input: string | Record<string, any>
abortController: AbortController
options: ICommonObject
modelConfig: ICommonObject
runtimeImageMessagesWithFileRef: BaseMessageLike[]
pastImageMessagesWithFileRef: BaseMessageLike[]
}): Promise<void> {
const { updatedPastMessages, transformedPastMessages } = await getPastChatHistoryImageMessages(pastChatHistory, options)
pastChatHistory = updatedPastMessages
pastImageMessagesWithFileRef.push(...transformedPastMessages)
let pastMessages = [...pastChatHistory, ...runtimeChatHistory]
if (!runtimeChatHistory.length && input && typeof input === 'string') {
/*
* If this is the first node:
* - Add images to messages if exist
* - Add user message
*/
if (options.uploads) {
const imageContents = await getUniqueImageMessages(options, messages, modelConfig)
if (imageContents) {
const { imageMessageWithBase64, imageMessageWithFileRef } = imageContents
pastMessages.push(imageMessageWithBase64)
runtimeImageMessagesWithFileRef.push(imageMessageWithFileRef)
}
}
pastMessages.push({
role: 'user',
content: input
})
}
const { updatedMessages, transformedMessages } = await processMessagesWithImages(pastMessages, options)
pastMessages = updatedMessages
pastImageMessagesWithFileRef.push(...transformedMessages)
if (pastMessages.length > 0) {
if (memoryType === 'windowSize') {
// Window memory: Keep the last N messages
const windowSize = nodeData.inputs?.llmMemoryWindowSize as number
const windowedMessages = pastMessages.slice(-windowSize * 2)
messages.push(...windowedMessages)
} else if (memoryType === 'conversationSummary') {
// Summary memory: Summarize all past messages
const summary = await llmNodeInstance.invoke(
[
{
role: 'user',
content: DEFAULT_SUMMARIZER_TEMPLATE.replace(
'{conversation}',
pastMessages.map((msg: any) => `${msg.role}: ${msg.content}`).join('\n')
)
}
],
{ signal: abortController?.signal }
)
messages.push({ role: 'assistant', content: summary.content as string })
} else if (memoryType === 'conversationSummaryBuffer') {
// Summary buffer: Summarize messages that exceed token limit
await this.handleSummaryBuffer(messages, pastMessages, llmNodeInstance, nodeData, abortController)
} else {
// Default: Use all messages
messages.push(...pastMessages)
}
}
// Add user message
if (userMessage) {
messages.push({
role: 'user',
content: userMessage
})
}
}
/**
* Handles conversation summary buffer memory type
*/
private async handleSummaryBuffer(
messages: BaseMessageLike[],
pastMessages: BaseMessageLike[],
llmNodeInstance: BaseChatModel,
nodeData: INodeData,
abortController: AbortController
): Promise<void> {
const maxTokenLimit = (nodeData.inputs?.llmMemoryMaxTokenLimit as number) || 2000
// Convert past messages to a format suitable for token counting
const messagesString = pastMessages.map((msg: any) => `${msg.role}: ${msg.content}`).join('\n')
const tokenCount = await llmNodeInstance.getNumTokens(messagesString)
if (tokenCount > maxTokenLimit) {
// Calculate how many messages to summarize (messages that exceed the token limit)
let currBufferLength = tokenCount
const messagesToSummarize = []
const remainingMessages = [...pastMessages]
// Remove messages from the beginning until we're under the token limit
while (currBufferLength > maxTokenLimit && remainingMessages.length > 0) {
const poppedMessage = remainingMessages.shift()
if (poppedMessage) {
messagesToSummarize.push(poppedMessage)
// Recalculate token count for remaining messages
const remainingMessagesString = remainingMessages.map((msg: any) => `${msg.role}: ${msg.content}`).join('\n')
currBufferLength = await llmNodeInstance.getNumTokens(remainingMessagesString)
}
}
// Summarize the messages that were removed
const messagesToSummarizeString = messagesToSummarize.map((msg: any) => `${msg.role}: ${msg.content}`).join('\n')
const summary = await llmNodeInstance.invoke(
[
{
role: 'user',
content: DEFAULT_SUMMARIZER_TEMPLATE.replace('{conversation}', messagesToSummarizeString)
}
],
{ signal: abortController?.signal }
)
// Add summary as a system message at the beginning, then add remaining messages
messages.push({ role: 'system', content: `Previous conversation summary: ${summary.content}` })
messages.push(...remainingMessages)
} else {
// If under token limit, use all messages
messages.push(...pastMessages)
}
}
/**
* Configures structured output for the LLM
*/
private configureStructuredOutput(llmNodeInstance: BaseChatModel, llmStructuredOutput: IStructuredOutput[]): BaseChatModel {
try {
const zodObj: ICommonObject = {}
for (const sch of llmStructuredOutput) {
if (sch.type === 'string') {
zodObj[sch.key] = z.string().describe(sch.description || '')
} else if (sch.type === 'stringArray') {
zodObj[sch.key] = z.array(z.string()).describe(sch.description || '')
} else if (sch.type === 'number') {
zodObj[sch.key] = z.number().describe(sch.description || '')
} else if (sch.type === 'boolean') {
zodObj[sch.key] = z.boolean().describe(sch.description || '')
} else if (sch.type === 'enum') {
const enumValues = sch.enumValues?.split(',').map((item: string) => item.trim()) || []
zodObj[sch.key] = z
.enum(enumValues.length ? (enumValues as [string, ...string[]]) : ['default'])
.describe(sch.description || '')
} else if (sch.type === 'jsonArray') {
const jsonSchema = sch.jsonSchema
if (jsonSchema) {
try {
// Parse the JSON schema
const schemaObj = JSON.parse(jsonSchema)
// Create a Zod schema from the JSON schema
const itemSchema = this.createZodSchemaFromJSON(schemaObj)
// Create an array schema of the item schema
zodObj[sch.key] = z.array(itemSchema).describe(sch.description || '')
} catch (err) {
console.error(`Error parsing JSON schema for ${sch.key}:`, err)
// Fallback to generic array of records
zodObj[sch.key] = z.array(z.record(z.any())).describe(sch.description || '')
}
} else {
// If no schema provided, use generic array of records
zodObj[sch.key] = z.array(z.record(z.any())).describe(sch.description || '')
}
}
}
const structuredOutput = z.object(zodObj)
// @ts-ignore
return llmNodeInstance.withStructuredOutput(structuredOutput)
} catch (exception) {
console.error(exception)
return llmNodeInstance
}
}
/**
* Handles streaming response from the LLM
*/
private async handleStreamingResponse(
sseStreamer: IServerSideEventStreamer | undefined,
llmNodeInstance: BaseChatModel,
messages: BaseMessageLike[],
chatId: string,
abortController: AbortController
): Promise<AIMessageChunk> {
let response = new AIMessageChunk('')
try {
for await (const chunk of await llmNodeInstance.stream(messages, { signal: abortController?.signal })) {
if (sseStreamer) {
let content = ''
if (Array.isArray(chunk.content) && chunk.content.length > 0) {
const contents = chunk.content as MessageContentText[]
content = contents.map((item) => item.text).join('')
} else {
content = chunk.content.toString()
}
sseStreamer.streamTokenEvent(chatId, content)
}
response = response.concat(chunk)
}
} catch (error) {
console.error('Error during streaming:', error)
throw error
}
if (Array.isArray(response.content) && response.content.length > 0) {
const responseContents = response.content as MessageContentText[]
response.content = responseContents.map((item) => item.text).join('')
}
return response
}
/**
* Prepares the output object with response and metadata
*/
private prepareOutputObject(
response: AIMessageChunk,
finalResponse: string,
startTime: number,
endTime: number,
timeDelta: number,
isStructuredOutput: boolean
): any {
const output: any = {
content: finalResponse,
timeMetadata: {
start: startTime,
end: endTime,
delta: timeDelta
}
}
if (response.tool_calls) {
output.calledTools = response.tool_calls
}
if (response.usage_metadata) {
output.usageMetadata = response.usage_metadata
}
if (isStructuredOutput && typeof response === 'object') {
const structuredOutput = response as Record<string, any>
for (const key in structuredOutput) {
if (structuredOutput[key] !== undefined && structuredOutput[key] !== null) {
output[key] = structuredOutput[key]
}
}
}
return output
}
/**
* Sends additional streaming events for tool calls and metadata
*/
private sendStreamingEvents(options: ICommonObject, chatId: string, response: AIMessageChunk): void {
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
if (response.tool_calls) {
const formattedToolCalls = response.tool_calls.map((toolCall: any) => ({
tool: toolCall.name || 'tool',
toolInput: toolCall.args,
toolOutput: ''
}))
sseStreamer.streamCalledToolsEvent(chatId, flatten(formattedToolCalls))
}
if (response.usage_metadata) {
sseStreamer.streamUsageMetadataEvent(chatId, response.usage_metadata)
}
sseStreamer.streamEndEvent(chatId)
}
/**
* Creates a Zod schema from a JSON schema object
* @param jsonSchema The JSON schema object
* @returns A Zod schema
*/
private createZodSchemaFromJSON(jsonSchema: any): z.ZodTypeAny {
// If the schema is an object with properties, create an object schema
if (typeof jsonSchema === 'object' && jsonSchema !== null) {
const schemaObj: Record<string, z.ZodTypeAny> = {}
// Process each property in the schema
for (const [key, value] of Object.entries(jsonSchema)) {
if (value === null) {
// Handle null values
schemaObj[key] = z.null()
} else if (typeof value === 'object' && !Array.isArray(value)) {
// Check if the property has a type definition
if ('type' in value) {
const type = value.type as string
const description = ('description' in value ? (value.description as string) : '') || ''
// Create the appropriate Zod type based on the type property
if (type === 'string') {
schemaObj[key] = z.string().describe(description)
} else if (type === 'number') {
schemaObj[key] = z.number().describe(description)
} else if (type === 'boolean') {
schemaObj[key] = z.boolean().describe(description)
} else if (type === 'array') {
// If it's an array type, check if items is defined
if ('items' in value && value.items) {
const itemSchema = this.createZodSchemaFromJSON(value.items)
schemaObj[key] = z.array(itemSchema).describe(description)
} else {
// Default to array of any if items not specified
schemaObj[key] = z.array(z.any()).describe(description)
}
} else if (type === 'object') {
// If it's an object type, check if properties is defined
if ('properties' in value && value.properties) {
const nestedSchema = this.createZodSchemaFromJSON(value.properties)
schemaObj[key] = nestedSchema.describe(description)
} else {
// Default to record of any if properties not specified
schemaObj[key] = z.record(z.any()).describe(description)
}
} else {
// Default to any for unknown types
schemaObj[key] = z.any().describe(description)
}
// Check if the property is optional
if ('optional' in value && value.optional === true) {
schemaObj[key] = schemaObj[key].optional()
}
} else if (Array.isArray(value)) {
// Array values without a type property
if (value.length > 0) {
// If the array has items, recursively create a schema for the first item
const itemSchema = this.createZodSchemaFromJSON(value[0])
schemaObj[key] = z.array(itemSchema)
} else {
// Empty array, allow any array
schemaObj[key] = z.array(z.any())
}
} else {
// It's a nested object without a type property, recursively create schema
schemaObj[key] = this.createZodSchemaFromJSON(value)
}
} else if (Array.isArray(value)) {
// Array values
if (value.length > 0) {
// If the array has items, recursively create a schema for the first item
const itemSchema = this.createZodSchemaFromJSON(value[0])
schemaObj[key] = z.array(itemSchema)
} else {
// Empty array, allow any array
schemaObj[key] = z.array(z.any())
}
} else {
// For primitive values (which shouldn't be in the schema directly)
// Use the corresponding Zod type
if (typeof value === 'string') {
schemaObj[key] = z.string()
} else if (typeof value === 'number') {
schemaObj[key] = z.number()
} else if (typeof value === 'boolean') {
schemaObj[key] = z.boolean()
} else {
schemaObj[key] = z.any()
}
}
}
return z.object(schemaObj)
}
// Fallback to any for unknown types
return z.any()
}
}
module.exports = { nodeClass: LLM_Agentflow }