Flowise/packages/components/nodes/vectorstores/MongoDBAtlas/MongoDBSearchBase.ts

148 lines
5.0 KiB
TypeScript

import {
getBaseClasses,
getCredentialData,
getCredentialParam,
ICommonObject,
INodeData,
INodeOutputsValue,
INodeParams
} from '../../../src'
import { Embeddings } from 'langchain/embeddings/base'
import { VectorStore } from 'langchain/vectorstores/base'
import { Document } from 'langchain/document'
import { MongoDBAtlasVectorSearch } from 'langchain/vectorstores/mongodb_atlas'
import { Collection, MongoClient } from 'mongodb'
export abstract class MongoDBSearchBase {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
mongoClient: MongoClient
protected constructor() {
this.type = 'MongoDB Atlas'
this.icon = 'mongodb.svg'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.badge = 'DEPRECATING'
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['mongoDBUrlApi']
}
this.inputs = [
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Database',
name: 'databaseName',
placeholder: '<DB_NAME>',
type: 'string'
},
{
label: 'Collection Name',
name: 'collectionName',
placeholder: '<COLLECTION_NAME>',
type: 'string'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<VECTOR_INDEX_NAME>',
type: 'string'
},
{
label: 'Content Field',
name: 'textKey',
description: 'Name of the field (column) that contains the actual content',
type: 'string',
default: 'text',
additionalParams: true,
optional: true
},
{
label: 'Embedded Field',
name: 'embeddingKey',
description: 'Name of the field (column) that contains the Embedding',
type: 'string',
default: 'embedding',
additionalParams: true,
optional: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'MongoDB Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'MongoDB Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(MongoDBAtlasVectorSearch)]
}
]
}
abstract constructVectorStore(
embeddings: Embeddings,
collection: Collection,
indexName: string,
textKey: string,
embeddingKey: string,
docs: Document<Record<string, any>>[] | undefined
): Promise<VectorStore>
async init(nodeData: INodeData, _: string, options: ICommonObject, docs: Document<Record<string, any>>[] | undefined): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const databaseName = nodeData.inputs?.databaseName as string
const collectionName = nodeData.inputs?.collectionName as string
const indexName = nodeData.inputs?.indexName as string
let textKey = nodeData.inputs?.textKey as string
let embeddingKey = nodeData.inputs?.embeddingKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const output = nodeData.outputs?.output as string
let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData)
this.mongoClient = new MongoClient(mongoDBConnectUrl)
const collection = this.mongoClient.db(databaseName).collection(collectionName)
if (!textKey || textKey === '') textKey = 'text'
if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding'
const vectorStore = await this.constructVectorStore(embeddings, collection, indexName, textKey, embeddingKey, docs)
if (output === 'retriever') {
return vectorStore.asRetriever(k)
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}