Flowise/packages/components/nodes/vectorstores/Meilisearch/Meilisearch.ts

273 lines
11 KiB
TypeScript

import { getCredentialData, getCredentialParam } from '../../../src'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { Meilisearch } from 'meilisearch'
import { MeilisearchRetriever } from './core'
import { flatten } from 'lodash'
import { Document } from '@langchain/core/documents'
import { v4 as uuidv4 } from 'uuid'
import { Embeddings } from '@langchain/core/embeddings'
class MeilisearchRetriever_node implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
author?: string
constructor() {
this.label = 'Meilisearch'
this.name = 'meilisearch'
this.version = 1.0
this.type = 'Meilisearch'
this.icon = 'Meilisearch.png'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity search upon query using Meilisearch hybrid search functionality`
this.baseClasses = ['BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['meilisearchApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Host',
name: 'host',
type: 'string',
description: "This is the URL for the desired Meilisearch instance, the URL must not end with a '/'"
},
{
label: 'Index Uid',
name: 'indexUid',
type: 'string',
description: 'UID for the index to answer from'
},
{
label: 'Delete Index if exists',
name: 'deleteIndex',
type: 'boolean',
optional: true
},
{
label: 'Top K',
name: 'K',
type: 'number',
description: 'number of top searches to return as context, default is 4',
additionalParams: true,
optional: true
},
{
label: 'Semantic Ratio',
name: 'semanticRatio',
type: 'number',
description: 'percentage of sematic reasoning in meilisearch hybrid search, default is 0.75',
additionalParams: true,
optional: true
},
{
label: 'Search Filter',
name: 'searchFilter',
type: 'string',
description: 'search filter to apply on searchable attributes',
additionalParams: true,
optional: true,
acceptVariable: true
}
]
this.outputs = [
{
label: 'Meilisearch Retriever',
name: 'MeilisearchRetriever',
description: 'retrieve answers',
baseClasses: this.baseClasses
}
]
this.outputs = [
{
label: 'Meilisearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const meilisearchAdminApiKey = getCredentialParam('meilisearchAdminApiKey', credentialData, nodeData)
const docs = nodeData.inputs?.document as Document[]
const host = nodeData.inputs?.host as string
const indexUid = nodeData.inputs?.indexUid as string
const deleteIndex = nodeData.inputs?.deleteIndex as boolean
const embeddings = nodeData.inputs?.embeddings as Embeddings
let embeddingDimension: number = 384
const client = new Meilisearch({
host: host,
apiKey: meilisearchAdminApiKey
})
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
const uniqueId = uuidv4()
const { pageContent, metadata } = flattenDocs[i]
const docEmbedding = await embeddings.embedQuery(pageContent)
embeddingDimension = docEmbedding.length
const documentForIndexing = {
pageContent,
metadata,
objectID: uniqueId,
_vectors: {
ollama: {
embeddings: docEmbedding,
regenerate: false
}
}
}
finalDocs.push(documentForIndexing)
}
}
let taskUid_created: number = 0
if (deleteIndex) {
try {
const deleteResponse = await client.deleteIndex(indexUid)
taskUid_created = deleteResponse.taskUid
let deleteTaskStatus = await client.getTask(taskUid_created)
while (deleteTaskStatus.status !== 'succeeded') {
deleteTaskStatus = await client.getTask(taskUid_created)
if (deleteTaskStatus.error !== null || deleteTaskStatus.status === 'failed') {
throw new Error('Error during index deletion task: ' + deleteTaskStatus.error)
}
}
} catch (error) {
console.error(error)
console.warn('Error occured when deleting your index, if it did not exist, we will create one for you... ')
}
}
let index: any
try {
index = await client.getIndex(indexUid)
} catch (error) {
console.warn('Index not found, creating a new index...')
try {
const createResponse = await client.createIndex(indexUid, { primaryKey: 'objectID' })
taskUid_created = createResponse.taskUid
let createTaskStatus = await client.getTask(taskUid_created)
while (createTaskStatus.status !== 'succeeded') {
createTaskStatus = await client.getTask(taskUid_created)
if (createTaskStatus.error !== null || createTaskStatus.status === 'failed') {
throw new Error('Error during index creation task: ' + createTaskStatus.error)
}
}
index = await client.getIndex(indexUid)
} catch (taskError) {
console.error('Error during index creation process:', taskError)
}
}
try {
await index.updateFilterableAttributes(['metadata'])
await index.updateSettings({
embedders: {
ollama: {
source: 'userProvided',
dimensions: embeddingDimension
}
}
})
const addResponse = await index.addDocuments(finalDocs)
taskUid_created = addResponse.taskUid
let AddTaskStatus = await client.getTask(taskUid_created)
while (AddTaskStatus.status !== 'succeeded') {
AddTaskStatus = await client.getTask(taskUid_created)
if (AddTaskStatus.error !== null || AddTaskStatus.status === 'failed') {
throw new Error('Error during documents adding task: ' + AddTaskStatus.error)
}
}
index = await client.getIndex(indexUid)
} catch (error) {
console.error('Error occurred while adding documents:', error)
}
return { numAdded: finalDocs.length, addedDocs: finalDocs }
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const meilisearchSearchApiKey = getCredentialParam('meilisearchSearchApiKey', credentialData, nodeData)
const meilisearchAdminApiKey = getCredentialParam('meilisearchAdminApiKey', credentialData, nodeData)
const host = nodeData.inputs?.host as string
const indexUid = nodeData.inputs?.indexUid as string
const K = nodeData.inputs?.K as string
const semanticRatio = nodeData.inputs?.semanticRatio as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const searchFilter = nodeData.inputs?.searchFilter as string
const experimentalEndpoint = host + '/experimental-features/'
const token = meilisearchAdminApiKey
const experimentalOptions = {
method: 'PATCH',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${token}`
},
body: JSON.stringify({
vectorStore: true
})
}
try {
const response = await fetch(experimentalEndpoint, experimentalOptions)
if (!response.ok) {
throw new Error(`Failed to enable vectorStore: ${response.statusText}`)
}
const data = await response.json()
const vectorStoreEnabled = data.vectorStore
if (vectorStoreEnabled !== true) {
throw new Error('Failed to enable vectorStore, vectorStrore property returned is not true')
}
} catch (error) {
console.error('Error enabling vectorStore feature:', error)
}
const hybridsearchretriever = new MeilisearchRetriever(
host,
meilisearchSearchApiKey,
indexUid,
K,
semanticRatio,
embeddings,
searchFilter
)
return hybridsearchretriever
}
}
module.exports = { nodeClass: MeilisearchRetriever_node }