276 lines
9.7 KiB
TypeScript
276 lines
9.7 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { IDocument, ZepClient } from '@getzep/zep-js'
|
|
import { ZepVectorStore, IZepConfig } from '@langchain/community/vectorstores/zep'
|
|
import { Embeddings } from '@langchain/core/embeddings'
|
|
import { Document } from '@langchain/core/documents'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
|
|
|
|
class Zep_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Zep Collection - Open Source'
|
|
this.name = 'zep'
|
|
this.version = 2.0
|
|
this.type = 'Zep'
|
|
this.icon = 'zep.svg'
|
|
this.category = 'Vector Stores'
|
|
this.description =
|
|
'Upsert embedded data and perform similarity or mmr search upon query using Zep, a fast and scalable building block for LLM apps'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
optional: true,
|
|
description: 'Configure JWT authentication on your Zep instance (Optional)',
|
|
credentialNames: ['zepMemoryApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Base URL',
|
|
name: 'baseURL',
|
|
type: 'string',
|
|
default: 'http://127.0.0.1:8000'
|
|
},
|
|
{
|
|
label: 'Zep Collection',
|
|
name: 'zepCollection',
|
|
type: 'string',
|
|
placeholder: 'my-first-collection'
|
|
},
|
|
{
|
|
label: 'Zep Metadata Filter',
|
|
name: 'zepMetadataFilter',
|
|
type: 'json',
|
|
optional: true,
|
|
additionalParams: true,
|
|
acceptVariable: true
|
|
},
|
|
{
|
|
label: 'Embedding Dimension',
|
|
name: 'dimension',
|
|
type: 'number',
|
|
default: 1536,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
addMMRInputParams(this.inputs)
|
|
this.outputs = [
|
|
{
|
|
label: 'Zep Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Zep Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(ZepVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
|
|
const baseURL = nodeData.inputs?.baseURL as string
|
|
const zepCollection = nodeData.inputs?.zepCollection as string
|
|
const dimension = (nodeData.inputs?.dimension as number) ?? 1536
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
}
|
|
|
|
const zepConfig: IZepConfig = {
|
|
apiUrl: baseURL,
|
|
collectionName: zepCollection,
|
|
embeddingDimensions: dimension,
|
|
isAutoEmbedded: false
|
|
}
|
|
if (apiKey) zepConfig.apiKey = apiKey
|
|
|
|
try {
|
|
await ZepVectorStore.fromDocuments(finalDocs, embeddings, zepConfig)
|
|
return { numAdded: finalDocs.length, addedDocs: finalDocs }
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const baseURL = nodeData.inputs?.baseURL as string
|
|
const zepCollection = nodeData.inputs?.zepCollection as string
|
|
const zepMetadataFilter = nodeData.inputs?.zepMetadataFilter
|
|
const dimension = nodeData.inputs?.dimension as number
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
|
|
const zepConfig: IZepConfig & Partial<ZepFilter> = {
|
|
apiUrl: baseURL,
|
|
collectionName: zepCollection,
|
|
embeddingDimensions: dimension,
|
|
isAutoEmbedded: false
|
|
}
|
|
if (apiKey) zepConfig.apiKey = apiKey
|
|
if (zepMetadataFilter) {
|
|
const metadatafilter = typeof zepMetadataFilter === 'object' ? zepMetadataFilter : JSON.parse(zepMetadataFilter)
|
|
zepConfig.filter = metadatafilter
|
|
}
|
|
|
|
const vectorStore = await ZepExistingVS.fromExistingIndex(embeddings, zepConfig)
|
|
|
|
return resolveVectorStoreOrRetriever(nodeData, vectorStore, zepConfig.filter)
|
|
}
|
|
}
|
|
|
|
interface ZepFilter {
|
|
filter: Record<string, any>
|
|
}
|
|
|
|
function zepDocsToDocumentsAndScore(results: IDocument[]): [Document, number][] {
|
|
return results.map((d) => [
|
|
new Document({
|
|
pageContent: d.content,
|
|
metadata: d.metadata
|
|
}),
|
|
d.score ? d.score : 0
|
|
])
|
|
}
|
|
|
|
function assignMetadata(value: string | Record<string, unknown> | object | undefined): Record<string, unknown> | undefined {
|
|
if (typeof value === 'object' && value !== null) {
|
|
return value as Record<string, unknown>
|
|
}
|
|
if (value !== undefined) {
|
|
console.warn('Metadata filters must be an object, Record, or undefined.')
|
|
}
|
|
return undefined
|
|
}
|
|
|
|
class ZepExistingVS extends ZepVectorStore {
|
|
filter?: Record<string, any>
|
|
args?: IZepConfig & Partial<ZepFilter>
|
|
|
|
constructor(embeddings: Embeddings, args: IZepConfig & Partial<ZepFilter>) {
|
|
super(embeddings, args)
|
|
this.filter = args.filter
|
|
this.args = args
|
|
}
|
|
|
|
async initializeCollection(args: IZepConfig & Partial<ZepFilter>) {
|
|
this.client = await ZepClient.init(args.apiUrl, args.apiKey)
|
|
try {
|
|
this.collection = await this.client.document.getCollection(args.collectionName)
|
|
} catch (err) {
|
|
if (err instanceof Error) {
|
|
if (err.name === 'NotFoundError') {
|
|
await this.createNewCollection(args)
|
|
} else {
|
|
throw err
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
async createNewCollection(args: IZepConfig & Partial<ZepFilter>) {
|
|
if (!args.embeddingDimensions) {
|
|
throw new Error(
|
|
`Collection ${args.collectionName} not found. You can create a new Collection by providing embeddingDimensions.`
|
|
)
|
|
}
|
|
|
|
this.collection = await this.client.document.addCollection({
|
|
name: args.collectionName,
|
|
description: args.description,
|
|
metadata: args.metadata,
|
|
embeddingDimensions: args.embeddingDimensions,
|
|
isAutoEmbedded: false
|
|
})
|
|
}
|
|
|
|
async similaritySearchVectorWithScore(
|
|
query: number[],
|
|
k: number,
|
|
filter?: Record<string, unknown> | undefined
|
|
): Promise<[Document, number][]> {
|
|
if (filter && this.filter) {
|
|
throw new Error('cannot provide both `filter` and `this.filter`')
|
|
}
|
|
const _filters = filter ?? this.filter
|
|
const ANDFilters = []
|
|
for (const filterKey in _filters) {
|
|
let filterVal = _filters[filterKey]
|
|
if (typeof filterVal === 'string') filterVal = `"${filterVal}"`
|
|
ANDFilters.push({ jsonpath: `$[*] ? (@.${filterKey} == ${filterVal})` })
|
|
}
|
|
const newfilter = {
|
|
where: { and: ANDFilters }
|
|
}
|
|
await this.initializeCollection(this.args!).catch((err) => {
|
|
console.error('Error initializing collection:', err)
|
|
throw err
|
|
})
|
|
const results = await this.collection.search(
|
|
{
|
|
embedding: new Float32Array(query),
|
|
metadata: assignMetadata(newfilter)
|
|
},
|
|
k
|
|
)
|
|
return zepDocsToDocumentsAndScore(results)
|
|
}
|
|
|
|
static async fromExistingIndex(embeddings: Embeddings, dbConfig: IZepConfig & Partial<ZepFilter>): Promise<ZepVectorStore> {
|
|
const instance = new this(embeddings, dbConfig)
|
|
return instance
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: Zep_VectorStores }
|