243 lines
9.2 KiB
TypeScript
243 lines
9.2 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { ChainValues } from '@langchain/core/utils/types'
|
|
import { AgentStep } from '@langchain/core/agents'
|
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
|
|
import { RunnableSequence } from '@langchain/core/runnables'
|
|
import { Tool } from '@langchain/core/tools'
|
|
import { ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder } from '@langchain/core/prompts'
|
|
import { formatLogToMessage } from 'langchain/agents/format_scratchpad/log_to_message'
|
|
import { getBaseClasses } from '../../../src/utils'
|
|
import { FlowiseMemory, ICommonObject, IMessage, INode, INodeData, INodeParams, IUsedTool } from '../../../src/Interface'
|
|
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
|
|
import { AgentExecutor, XMLAgentOutputParser } from '../../../src/agents'
|
|
import { Moderation, checkInputs } from '../../moderation/Moderation'
|
|
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
|
|
|
|
const defaultSystemMessage = `You are a helpful assistant. Help the user answer any questions.
|
|
|
|
You have access to the following tools:
|
|
|
|
{tools}
|
|
|
|
In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>
|
|
For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:
|
|
|
|
<tool>search</tool><tool_input>weather in SF</tool_input>
|
|
<observation>64 degrees</observation>
|
|
|
|
When you are done, respond with a final answer between <final_answer></final_answer>. For example:
|
|
|
|
<final_answer>The weather in SF is 64 degrees</final_answer>
|
|
|
|
Begin!
|
|
|
|
Previous Conversation:
|
|
{chat_history}
|
|
|
|
Question: {input}
|
|
{agent_scratchpad}`
|
|
|
|
class XMLAgent_Agents implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
sessionId?: string
|
|
badge?: string
|
|
|
|
constructor(fields?: { sessionId?: string }) {
|
|
this.label = 'XML Agent'
|
|
this.name = 'xmlAgent'
|
|
this.version = 2.0
|
|
this.type = 'XMLAgent'
|
|
this.category = 'Agents'
|
|
this.icon = 'xmlagent.svg'
|
|
this.badge = 'NEW'
|
|
this.description = `Agent that is designed for LLMs that are good for reasoning/writing XML (e.g: Anthropic Claude)`
|
|
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
|
|
this.inputs = [
|
|
{
|
|
label: 'Tools',
|
|
name: 'tools',
|
|
type: 'Tool',
|
|
list: true
|
|
},
|
|
{
|
|
label: 'Memory',
|
|
name: 'memory',
|
|
type: 'BaseChatMemory'
|
|
},
|
|
{
|
|
label: 'Chat Model',
|
|
name: 'model',
|
|
type: 'BaseChatModel'
|
|
},
|
|
{
|
|
label: 'System Message',
|
|
name: 'systemMessage',
|
|
type: 'string',
|
|
warning: 'Prompt must include input variables: {tools}, {chat_history}, {input} and {agent_scratchpad}',
|
|
rows: 4,
|
|
default: defaultSystemMessage,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Input Moderation',
|
|
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
|
|
name: 'inputModeration',
|
|
type: 'Moderation',
|
|
optional: true,
|
|
list: true
|
|
}
|
|
]
|
|
this.sessionId = fields?.sessionId
|
|
}
|
|
|
|
async init(): Promise<any> {
|
|
return null
|
|
}
|
|
|
|
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | ICommonObject> {
|
|
const memory = nodeData.inputs?.memory as FlowiseMemory
|
|
const moderations = nodeData.inputs?.inputModeration as Moderation[]
|
|
|
|
if (moderations && moderations.length > 0) {
|
|
try {
|
|
// Use the output of the moderation chain as input for the OpenAI Function Agent
|
|
input = await checkInputs(moderations, input)
|
|
} catch (e) {
|
|
await new Promise((resolve) => setTimeout(resolve, 500))
|
|
//streamResponse(options.socketIO && options.socketIOClientId, e.message, options.socketIO, options.socketIOClientId)
|
|
return formatResponse(e.message)
|
|
}
|
|
}
|
|
const executor = await prepareAgent(nodeData, { sessionId: this.sessionId, chatId: options.chatId, input })
|
|
|
|
const loggerHandler = new ConsoleCallbackHandler(options.logger)
|
|
const callbacks = await additionalCallbacks(nodeData, options)
|
|
|
|
let res: ChainValues = {}
|
|
let sourceDocuments: ICommonObject[] = []
|
|
let usedTools: IUsedTool[] = []
|
|
|
|
if (options.socketIO && options.socketIOClientId) {
|
|
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
|
|
res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
|
|
if (res.sourceDocuments) {
|
|
options.socketIO.to(options.socketIOClientId).emit('sourceDocuments', flatten(res.sourceDocuments))
|
|
sourceDocuments = res.sourceDocuments
|
|
}
|
|
if (res.usedTools) {
|
|
options.socketIO.to(options.socketIOClientId).emit('usedTools', res.usedTools)
|
|
usedTools = res.usedTools
|
|
}
|
|
} else {
|
|
res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
|
|
if (res.sourceDocuments) {
|
|
sourceDocuments = res.sourceDocuments
|
|
}
|
|
if (res.usedTools) {
|
|
usedTools = res.usedTools
|
|
}
|
|
}
|
|
|
|
await memory.addChatMessages(
|
|
[
|
|
{
|
|
text: input,
|
|
type: 'userMessage'
|
|
},
|
|
{
|
|
text: res?.output,
|
|
type: 'apiMessage'
|
|
}
|
|
],
|
|
this.sessionId
|
|
)
|
|
|
|
let finalRes = res?.output
|
|
|
|
if (sourceDocuments.length || usedTools.length) {
|
|
finalRes = { text: res?.output }
|
|
if (sourceDocuments.length) {
|
|
finalRes.sourceDocuments = flatten(sourceDocuments)
|
|
}
|
|
if (usedTools.length) {
|
|
finalRes.usedTools = usedTools
|
|
}
|
|
return finalRes
|
|
}
|
|
|
|
return finalRes
|
|
}
|
|
}
|
|
|
|
const prepareAgent = async (nodeData: INodeData, flowObj: { sessionId?: string; chatId?: string; input?: string }) => {
|
|
const model = nodeData.inputs?.model as BaseChatModel
|
|
const memory = nodeData.inputs?.memory as FlowiseMemory
|
|
const systemMessage = nodeData.inputs?.systemMessage as string
|
|
let tools = nodeData.inputs?.tools
|
|
tools = flatten(tools)
|
|
const inputKey = memory.inputKey ? memory.inputKey : 'input'
|
|
const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history'
|
|
|
|
let promptMessage = systemMessage ? systemMessage : defaultSystemMessage
|
|
if (memory.memoryKey) promptMessage = promptMessage.replaceAll('{chat_history}', `{${memory.memoryKey}}`)
|
|
if (memory.inputKey) promptMessage = promptMessage.replaceAll('{input}', `{${memory.inputKey}}`)
|
|
|
|
const prompt = ChatPromptTemplate.fromMessages([
|
|
HumanMessagePromptTemplate.fromTemplate(promptMessage),
|
|
new MessagesPlaceholder('agent_scratchpad')
|
|
])
|
|
|
|
const missingVariables = ['tools', 'agent_scratchpad'].filter((v) => !prompt.inputVariables.includes(v))
|
|
|
|
if (missingVariables.length > 0) {
|
|
throw new Error(`Provided prompt is missing required input variables: ${JSON.stringify(missingVariables)}`)
|
|
}
|
|
|
|
const llmWithStop = model.bind({ stop: ['</tool_input>', '</final_answer>'] })
|
|
|
|
const messages = (await memory.getChatMessages(flowObj.sessionId, false)) as IMessage[]
|
|
let chatHistoryMsgTxt = ''
|
|
for (const message of messages) {
|
|
if (message.type === 'apiMessage') {
|
|
chatHistoryMsgTxt += `\\nAI:${message.message}`
|
|
} else if (message.type === 'userMessage') {
|
|
chatHistoryMsgTxt += `\\nHuman:${message.message}`
|
|
}
|
|
}
|
|
|
|
const runnableAgent = RunnableSequence.from([
|
|
{
|
|
[inputKey]: (i: { input: string; tools: Tool[]; steps: AgentStep[] }) => i.input,
|
|
agent_scratchpad: (i: { input: string; tools: Tool[]; steps: AgentStep[] }) => formatLogToMessage(i.steps),
|
|
tools: (_: { input: string; tools: Tool[]; steps: AgentStep[] }) =>
|
|
tools.map((tool: Tool) => `${tool.name}: ${tool.description}`),
|
|
[memoryKey]: (_: { input: string; tools: Tool[]; steps: AgentStep[] }) => chatHistoryMsgTxt
|
|
},
|
|
prompt,
|
|
llmWithStop,
|
|
new XMLAgentOutputParser()
|
|
])
|
|
|
|
const executor = AgentExecutor.fromAgentAndTools({
|
|
agent: runnableAgent,
|
|
tools,
|
|
sessionId: flowObj?.sessionId,
|
|
chatId: flowObj?.chatId,
|
|
input: flowObj?.input,
|
|
isXML: true,
|
|
verbose: process.env.DEBUG === 'true' ? true : false
|
|
})
|
|
|
|
return executor
|
|
}
|
|
|
|
module.exports = { nodeClass: XMLAgent_Agents }
|