150 lines
5.4 KiB
TypeScript
150 lines
5.4 KiB
TypeScript
import { FlowiseMemory, ICommonObject, IMessage, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { BaseNode, Metadata, BaseRetriever, LLM, ContextChatEngine, ChatMessage } from 'llamaindex'
|
|
import { reformatSourceDocuments } from '../EngineUtils'
|
|
|
|
class ContextChatEngine_LlamaIndex implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
tags: string[]
|
|
inputs: INodeParams[]
|
|
outputs: INodeOutputsValue[]
|
|
sessionId?: string
|
|
|
|
constructor(fields?: { sessionId?: string }) {
|
|
this.label = 'Context Chat Engine'
|
|
this.name = 'contextChatEngine'
|
|
this.version = 1.0
|
|
this.type = 'ContextChatEngine'
|
|
this.icon = 'context-chat-engine.png'
|
|
this.category = 'Engine'
|
|
this.description = 'Answer question based on retrieved documents (context) with built-in memory to remember conversation'
|
|
this.baseClasses = [this.type]
|
|
this.tags = ['LlamaIndex']
|
|
this.inputs = [
|
|
{
|
|
label: 'Chat Model',
|
|
name: 'model',
|
|
type: 'BaseChatModel_LlamaIndex'
|
|
},
|
|
{
|
|
label: 'Vector Store Retriever',
|
|
name: 'vectorStoreRetriever',
|
|
type: 'VectorIndexRetriever'
|
|
},
|
|
{
|
|
label: 'Memory',
|
|
name: 'memory',
|
|
type: 'BaseChatMemory'
|
|
},
|
|
{
|
|
label: 'Return Source Documents',
|
|
name: 'returnSourceDocuments',
|
|
type: 'boolean',
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'System Message',
|
|
name: 'systemMessagePrompt',
|
|
type: 'string',
|
|
rows: 4,
|
|
optional: true,
|
|
placeholder:
|
|
'I want you to act as a document that I am having a conversation with. Your name is "AI Assistant". You will provide me with answers from the given info. If the answer is not included, say exactly "Hmm, I am not sure." and stop after that. Refuse to answer any question not about the info. Never break character.'
|
|
}
|
|
]
|
|
this.sessionId = fields?.sessionId
|
|
}
|
|
|
|
async init(): Promise<any> {
|
|
return null
|
|
}
|
|
|
|
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | ICommonObject> {
|
|
const model = nodeData.inputs?.model as LLM
|
|
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever
|
|
const systemMessagePrompt = nodeData.inputs?.systemMessagePrompt as string
|
|
const memory = nodeData.inputs?.memory as FlowiseMemory
|
|
const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean
|
|
|
|
const chatHistory = [] as ChatMessage[]
|
|
|
|
if (systemMessagePrompt) {
|
|
chatHistory.push({
|
|
content: systemMessagePrompt,
|
|
role: 'user'
|
|
})
|
|
}
|
|
|
|
const chatEngine = new ContextChatEngine({ chatModel: model, retriever: vectorStoreRetriever })
|
|
|
|
const msgs = (await memory.getChatMessages(this.sessionId, false)) as IMessage[]
|
|
for (const message of msgs) {
|
|
if (message.type === 'apiMessage') {
|
|
chatHistory.push({
|
|
content: message.message,
|
|
role: 'assistant'
|
|
})
|
|
} else if (message.type === 'userMessage') {
|
|
chatHistory.push({
|
|
content: message.message,
|
|
role: 'user'
|
|
})
|
|
}
|
|
}
|
|
|
|
let text = ''
|
|
let isStreamingStarted = false
|
|
let sourceDocuments: ICommonObject[] = []
|
|
let sourceNodes: BaseNode<Metadata>[] = []
|
|
const isStreamingEnabled = options.socketIO && options.socketIOClientId
|
|
|
|
if (isStreamingEnabled) {
|
|
const stream = await chatEngine.chat({ message: input, chatHistory, stream: true })
|
|
for await (const chunk of stream) {
|
|
text += chunk.response
|
|
if (chunk.sourceNodes) sourceNodes = chunk.sourceNodes
|
|
if (!isStreamingStarted) {
|
|
isStreamingStarted = true
|
|
options.socketIO.to(options.socketIOClientId).emit('start', chunk.response)
|
|
}
|
|
|
|
options.socketIO.to(options.socketIOClientId).emit('token', chunk.response)
|
|
}
|
|
|
|
if (returnSourceDocuments) {
|
|
sourceDocuments = reformatSourceDocuments(sourceNodes)
|
|
options.socketIO.to(options.socketIOClientId).emit('sourceDocuments', sourceDocuments)
|
|
}
|
|
} else {
|
|
const response = await chatEngine.chat({ message: input, chatHistory })
|
|
text = response?.response
|
|
sourceDocuments = reformatSourceDocuments(response?.sourceNodes ?? [])
|
|
}
|
|
|
|
await memory.addChatMessages(
|
|
[
|
|
{
|
|
text: input,
|
|
type: 'userMessage'
|
|
},
|
|
{
|
|
text: text,
|
|
type: 'apiMessage'
|
|
}
|
|
],
|
|
this.sessionId
|
|
)
|
|
|
|
if (returnSourceDocuments) return { text, sourceDocuments }
|
|
else return { text }
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: ContextChatEngine_LlamaIndex }
|