Flowise/packages/components/nodes/retrievers/ExtractMetadataRetriever/ExtractMetadataRetriever.ts

205 lines
7.5 KiB
TypeScript

import { Document } from '@langchain/core/documents'
import { VectorStore, VectorStoreRetriever, VectorStoreRetrieverInput } from '@langchain/core/vectorstores'
import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface'
import { handleEscapeCharacters } from '../../../src'
import { z } from 'zod'
import { convertStructuredSchemaToZod } from '../../sequentialagents/commonUtils'
const queryPrefix = 'query'
const defaultPrompt = `Extract keywords from the query: {{${queryPrefix}}}`
class ExtractMetadataRetriever_Retrievers implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge?: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Extract Metadata Retriever'
this.name = 'extractMetadataRetriever'
this.version = 1.0
this.type = 'ExtractMetadataRetriever'
this.icon = 'dynamicMetadataRetriever.svg'
this.category = 'Retrievers'
this.description = 'Extract keywords/metadata from the query and use it to filter documents'
this.baseClasses = [this.type, 'BaseRetriever']
this.inputs = [
{
label: 'Vector Store',
name: 'vectorStore',
type: 'VectorStore'
},
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'Query',
name: 'query',
type: 'string',
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
optional: true,
acceptVariable: true
},
{
label: 'Prompt',
name: 'dynamicMetadataFilterRetrieverPrompt',
type: 'string',
description: 'Prompt to extract metadata from query',
rows: 4,
additionalParams: true,
default: defaultPrompt
},
{
label: 'JSON Structured Output',
name: 'dynamicMetadataFilterRetrieverStructuredOutput',
type: 'datagrid',
description:
'Instruct the model to give output in a JSON structured schema. This output will be used as the metadata filter for connected vector store',
datagrid: [
{ field: 'key', headerName: 'Key', editable: true },
{
field: 'type',
headerName: 'Type',
type: 'singleSelect',
valueOptions: ['String', 'String Array', 'Number', 'Boolean', 'Enum'],
editable: true
},
{ field: 'enumValues', headerName: 'Enum Values', editable: true },
{ field: 'description', headerName: 'Description', flex: 1, editable: true }
],
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to vector store topK',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Extract Metadata Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Document',
name: 'document',
description: 'Array of document objects containing metadata and pageContent',
baseClasses: ['Document', 'json']
},
{
label: 'Text',
name: 'text',
description: 'Concatenated string from pageContent of documents',
baseClasses: ['string', 'json']
}
]
}
async init(nodeData: INodeData, input: string): Promise<any> {
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
let llm = nodeData.inputs?.model
const llmStructuredOutput = nodeData.inputs?.dynamicMetadataFilterRetrieverStructuredOutput
const topK = nodeData.inputs?.topK as string
const dynamicMetadataFilterRetrieverPrompt = nodeData.inputs?.dynamicMetadataFilterRetrieverPrompt as string
const query = nodeData.inputs?.query as string
const finalInputQuery = query ? query : input
const output = nodeData.outputs?.output as string
if (llmStructuredOutput && llmStructuredOutput !== '[]') {
try {
const structuredOutput = z.object(convertStructuredSchemaToZod(llmStructuredOutput))
// @ts-ignore
llm = llm.withStructuredOutput(structuredOutput)
} catch (exception) {
console.error(exception)
}
}
const retriever = DynamicMetadataRetriever.fromVectorStore(vectorStore, {
structuredLLM: llm,
prompt: dynamicMetadataFilterRetrieverPrompt,
topK: topK ? parseInt(topK, 10) : (vectorStore as any)?.k ?? 4
})
retriever.filter = vectorStore?.lc_kwargs?.filter ?? (vectorStore as any).filter
if (output === 'retriever') return retriever
else if (output === 'document') return await retriever.getRelevantDocuments(finalInputQuery)
else if (output === 'text') {
let finaltext = ''
const docs = await retriever.getRelevantDocuments(finalInputQuery)
for (const doc of docs) finaltext += `${doc.pageContent}\n`
return handleEscapeCharacters(finaltext, false)
}
return retriever
}
}
type RetrieverInput<V extends VectorStore> = Omit<VectorStoreRetrieverInput<V>, 'k'> & {
topK?: number
structuredLLM: any
prompt: string
}
class DynamicMetadataRetriever<V extends VectorStore> extends VectorStoreRetriever<V> {
topK = 4
structuredLLM: any
prompt = ''
constructor(input: RetrieverInput<V>) {
super(input)
this.topK = input.topK ?? this.topK
this.structuredLLM = input.structuredLLM ?? this.structuredLLM
this.prompt = input.prompt ?? this.prompt
}
async getFilter(query: string): Promise<any> {
const structuredResponse = await this.structuredLLM.invoke(this.prompt.replace(`{{${queryPrefix}}}`, query))
return structuredResponse
}
async getRelevantDocuments(query: string): Promise<Document[]> {
const newFilter = await this.getFilter(query)
// @ts-ignore
this.filter = { ...this.filter, ...newFilter }
const results = await this.vectorStore.similaritySearchWithScore(query, this.topK, this.filter)
const finalDocs: Document[] = []
for (const result of results) {
finalDocs.push(
new Document({
pageContent: result[0].pageContent,
metadata: result[0].metadata
})
)
}
return finalDocs
}
static fromVectorStore<V extends VectorStore>(vectorStore: V, options: Omit<RetrieverInput<V>, 'vectorStore'>) {
return new this<V>({ ...options, vectorStore })
}
}
module.exports = { nodeClass: ExtractMetadataRetriever_Retrievers }