205 lines
7.5 KiB
TypeScript
205 lines
7.5 KiB
TypeScript
import { Document } from '@langchain/core/documents'
|
|
import { VectorStore, VectorStoreRetriever, VectorStoreRetrieverInput } from '@langchain/core/vectorstores'
|
|
import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface'
|
|
import { handleEscapeCharacters } from '../../../src'
|
|
import { z } from 'zod'
|
|
import { convertStructuredSchemaToZod } from '../../sequentialagents/commonUtils'
|
|
|
|
const queryPrefix = 'query'
|
|
const defaultPrompt = `Extract keywords from the query: {{${queryPrefix}}}`
|
|
|
|
class ExtractMetadataRetriever_Retrievers implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge?: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Extract Metadata Retriever'
|
|
this.name = 'extractMetadataRetriever'
|
|
this.version = 1.0
|
|
this.type = 'ExtractMetadataRetriever'
|
|
this.icon = 'dynamicMetadataRetriever.svg'
|
|
this.category = 'Retrievers'
|
|
this.description = 'Extract keywords/metadata from the query and use it to filter documents'
|
|
this.baseClasses = [this.type, 'BaseRetriever']
|
|
this.inputs = [
|
|
{
|
|
label: 'Vector Store',
|
|
name: 'vectorStore',
|
|
type: 'VectorStore'
|
|
},
|
|
{
|
|
label: 'Chat Model',
|
|
name: 'model',
|
|
type: 'BaseChatModel'
|
|
},
|
|
{
|
|
label: 'Query',
|
|
name: 'query',
|
|
type: 'string',
|
|
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
|
|
optional: true,
|
|
acceptVariable: true
|
|
},
|
|
{
|
|
label: 'Prompt',
|
|
name: 'dynamicMetadataFilterRetrieverPrompt',
|
|
type: 'string',
|
|
description: 'Prompt to extract metadata from query',
|
|
rows: 4,
|
|
additionalParams: true,
|
|
default: defaultPrompt
|
|
},
|
|
{
|
|
label: 'JSON Structured Output',
|
|
name: 'dynamicMetadataFilterRetrieverStructuredOutput',
|
|
type: 'datagrid',
|
|
description:
|
|
'Instruct the model to give output in a JSON structured schema. This output will be used as the metadata filter for connected vector store',
|
|
datagrid: [
|
|
{ field: 'key', headerName: 'Key', editable: true },
|
|
{
|
|
field: 'type',
|
|
headerName: 'Type',
|
|
type: 'singleSelect',
|
|
valueOptions: ['String', 'String Array', 'Number', 'Boolean', 'Enum'],
|
|
editable: true
|
|
},
|
|
{ field: 'enumValues', headerName: 'Enum Values', editable: true },
|
|
{ field: 'description', headerName: 'Description', flex: 1, editable: true }
|
|
],
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to vector store topK',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Extract Metadata Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
description: 'Array of document objects containing metadata and pageContent',
|
|
baseClasses: ['Document', 'json']
|
|
},
|
|
{
|
|
label: 'Text',
|
|
name: 'text',
|
|
description: 'Concatenated string from pageContent of documents',
|
|
baseClasses: ['string', 'json']
|
|
}
|
|
]
|
|
}
|
|
|
|
async init(nodeData: INodeData, input: string): Promise<any> {
|
|
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
|
|
let llm = nodeData.inputs?.model
|
|
const llmStructuredOutput = nodeData.inputs?.dynamicMetadataFilterRetrieverStructuredOutput
|
|
const topK = nodeData.inputs?.topK as string
|
|
const dynamicMetadataFilterRetrieverPrompt = nodeData.inputs?.dynamicMetadataFilterRetrieverPrompt as string
|
|
const query = nodeData.inputs?.query as string
|
|
const finalInputQuery = query ? query : input
|
|
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
if (llmStructuredOutput && llmStructuredOutput !== '[]') {
|
|
try {
|
|
const structuredOutput = z.object(convertStructuredSchemaToZod(llmStructuredOutput))
|
|
|
|
// @ts-ignore
|
|
llm = llm.withStructuredOutput(structuredOutput)
|
|
} catch (exception) {
|
|
console.error(exception)
|
|
}
|
|
}
|
|
|
|
const retriever = DynamicMetadataRetriever.fromVectorStore(vectorStore, {
|
|
structuredLLM: llm,
|
|
prompt: dynamicMetadataFilterRetrieverPrompt,
|
|
topK: topK ? parseInt(topK, 10) : (vectorStore as any)?.k ?? 4
|
|
})
|
|
retriever.filter = vectorStore?.lc_kwargs?.filter ?? (vectorStore as any).filter
|
|
|
|
if (output === 'retriever') return retriever
|
|
else if (output === 'document') return await retriever.getRelevantDocuments(finalInputQuery)
|
|
else if (output === 'text') {
|
|
let finaltext = ''
|
|
|
|
const docs = await retriever.getRelevantDocuments(finalInputQuery)
|
|
|
|
for (const doc of docs) finaltext += `${doc.pageContent}\n`
|
|
|
|
return handleEscapeCharacters(finaltext, false)
|
|
}
|
|
|
|
return retriever
|
|
}
|
|
}
|
|
|
|
type RetrieverInput<V extends VectorStore> = Omit<VectorStoreRetrieverInput<V>, 'k'> & {
|
|
topK?: number
|
|
structuredLLM: any
|
|
prompt: string
|
|
}
|
|
|
|
class DynamicMetadataRetriever<V extends VectorStore> extends VectorStoreRetriever<V> {
|
|
topK = 4
|
|
structuredLLM: any
|
|
prompt = ''
|
|
|
|
constructor(input: RetrieverInput<V>) {
|
|
super(input)
|
|
this.topK = input.topK ?? this.topK
|
|
this.structuredLLM = input.structuredLLM ?? this.structuredLLM
|
|
this.prompt = input.prompt ?? this.prompt
|
|
}
|
|
|
|
async getFilter(query: string): Promise<any> {
|
|
const structuredResponse = await this.structuredLLM.invoke(this.prompt.replace(`{{${queryPrefix}}}`, query))
|
|
return structuredResponse
|
|
}
|
|
|
|
async getRelevantDocuments(query: string): Promise<Document[]> {
|
|
const newFilter = await this.getFilter(query)
|
|
// @ts-ignore
|
|
this.filter = { ...this.filter, ...newFilter }
|
|
const results = await this.vectorStore.similaritySearchWithScore(query, this.topK, this.filter)
|
|
|
|
const finalDocs: Document[] = []
|
|
for (const result of results) {
|
|
finalDocs.push(
|
|
new Document({
|
|
pageContent: result[0].pageContent,
|
|
metadata: result[0].metadata
|
|
})
|
|
)
|
|
}
|
|
return finalDocs
|
|
}
|
|
|
|
static fromVectorStore<V extends VectorStore>(vectorStore: V, options: Omit<RetrieverInput<V>, 'vectorStore'>) {
|
|
return new this<V>({ ...options, vectorStore })
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: ExtractMetadataRetriever_Retrievers }
|