Flowise/packages/components/nodes/chatmodels/ChatHuggingFace/ChatHuggingFace.ts

136 lines
5.1 KiB
TypeScript

import { BaseCache } from '@langchain/core/caches'
import { HFInput, HuggingFaceInference } from './core'
import { ICommonObject, INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
class ChatHuggingFace_ChatModels implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
description: string
baseClasses: string[]
credential: INodeParams
inputs: INodeParams[]
constructor() {
this.label = 'ChatHuggingFace'
this.name = 'chatHuggingFace'
this.version = 2.0
this.type = 'ChatHuggingFace'
this.icon = 'HuggingFace.svg'
this.category = 'Chat Models'
this.description = 'Wrapper around HuggingFace large language models'
this.baseClasses = [this.type, 'BaseChatModel', ...getBaseClasses(HuggingFaceInference)]
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['huggingFaceApi']
}
this.inputs = [
{
label: 'Cache',
name: 'cache',
type: 'BaseCache',
optional: true
},
{
label: 'Model',
name: 'model',
type: 'string',
description: 'If using own inference endpoint, leave this blank',
placeholder: 'gpt2',
optional: true
},
{
label: 'Endpoint',
name: 'endpoint',
type: 'string',
placeholder: 'https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2',
description: 'Using your own inference endpoint',
optional: true
},
{
label: 'Temperature',
name: 'temperature',
type: 'number',
step: 0.1,
description: 'Temperature parameter may not apply to certain model. Please check available model parameters',
optional: true,
additionalParams: true
},
{
label: 'Max Tokens',
name: 'maxTokens',
type: 'number',
step: 1,
description: 'Max Tokens parameter may not apply to certain model. Please check available model parameters',
optional: true,
additionalParams: true
},
{
label: 'Top Probability',
name: 'topP',
type: 'number',
step: 0.1,
description: 'Top Probability parameter may not apply to certain model. Please check available model parameters',
optional: true,
additionalParams: true
},
{
label: 'Top K',
name: 'hfTopK',
type: 'number',
step: 0.1,
description: 'Top K parameter may not apply to certain model. Please check available model parameters',
optional: true,
additionalParams: true
},
{
label: 'Frequency Penalty',
name: 'frequencyPenalty',
type: 'number',
step: 0.1,
description: 'Frequency Penalty parameter may not apply to certain model. Please check available model parameters',
optional: true,
additionalParams: true
}
]
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const model = nodeData.inputs?.model as string
const temperature = nodeData.inputs?.temperature as string
const maxTokens = nodeData.inputs?.maxTokens as string
const topP = nodeData.inputs?.topP as string
const hfTopK = nodeData.inputs?.hfTopK as string
const frequencyPenalty = nodeData.inputs?.frequencyPenalty as string
const endpoint = nodeData.inputs?.endpoint as string
const cache = nodeData.inputs?.cache as BaseCache
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const huggingFaceApiKey = getCredentialParam('huggingFaceApiKey', credentialData, nodeData)
const obj: Partial<HFInput> = {
model,
apiKey: huggingFaceApiKey
}
if (temperature) obj.temperature = parseFloat(temperature)
if (maxTokens) obj.maxTokens = parseInt(maxTokens, 10)
if (topP) obj.topP = parseFloat(topP)
if (hfTopK) obj.topK = parseFloat(hfTopK)
if (frequencyPenalty) obj.frequencyPenalty = parseFloat(frequencyPenalty)
if (endpoint) obj.endpoint = endpoint
const huggingFace = new HuggingFaceInference(obj)
if (cache) huggingFace.cache = cache
return huggingFace
}
}
module.exports = { nodeClass: ChatHuggingFace_ChatModels }