Flowise/packages/components/nodes/chains/ConversationalRetrievalQAChain/ConversationalRetrievalQACh...

192 lines
7.8 KiB
TypeScript

import { BaseLanguageModel } from 'langchain/base_language'
import { ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface'
import { CustomChainHandler, getBaseClasses } from '../../../src/utils'
import { ConversationalRetrievalQAChain } from 'langchain/chains'
import { AIMessage, BaseRetriever, HumanMessage } from 'langchain/schema'
import { BaseChatMemory, BufferMemory, ChatMessageHistory } from 'langchain/memory'
import { PromptTemplate } from 'langchain/prompts'
const default_qa_template = `Use the following pieces of context to answer the question at the end, in its original language. If you don't know the answer, just say that you don't know in its original language, don't try to make up an answer.
{context}
Question: {question}
Helpful Answer:`
const qa_template = `Use the following pieces of context to answer the question at the end, in its original language.
{context}
Question: {question}
Helpful Answer:`
const CUSTOM_QUESTION_GENERATOR_CHAIN_PROMPT = `Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. include it in the standalone question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:`
class ConversationalRetrievalQAChain_Chains implements INode {
label: string
name: string
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
constructor() {
this.label = 'Conversational Retrieval QA Chain'
this.name = 'conversationalRetrievalQAChain'
this.type = 'ConversationalRetrievalQAChain'
this.icon = 'chain.svg'
this.category = 'Chains'
this.description = 'Document QA - built on RetrievalQAChain to provide a chat history component'
this.baseClasses = [this.type, ...getBaseClasses(ConversationalRetrievalQAChain)]
this.inputs = [
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'Vector Store Retriever',
name: 'vectorStoreRetriever',
type: 'BaseRetriever'
},
{
label: 'Memory',
name: 'memory',
type: 'DynamoDBChatMemory | RedisBackedChatMemory | ZepMemory',
optional: true,
description: 'If no memory connected, default BufferMemory will be used'
},
{
label: 'Return Source Documents',
name: 'returnSourceDocuments',
type: 'boolean',
optional: true
},
{
label: 'System Message',
name: 'systemMessagePrompt',
type: 'string',
rows: 4,
additionalParams: true,
optional: true,
placeholder:
'I want you to act as a document that I am having a conversation with. Your name is "AI Assistant". You will provide me with answers from the given info. If the answer is not included, say exactly "Hmm, I am not sure." and stop after that. Refuse to answer any question not about the info. Never break character.'
},
{
label: 'Chain Option',
name: 'chainOption',
type: 'options',
options: [
{
label: 'MapReduceDocumentsChain',
name: 'map_reduce',
description:
'Suitable for QA tasks over larger documents and can run the preprocessing step in parallel, reducing the running time'
},
{
label: 'RefineDocumentsChain',
name: 'refine',
description: 'Suitable for QA tasks over a large number of documents.'
},
{
label: 'StuffDocumentsChain',
name: 'stuff',
description: 'Suitable for QA tasks over a small number of documents.'
}
],
additionalParams: true,
optional: true
}
]
}
async init(nodeData: INodeData): Promise<any> {
const model = nodeData.inputs?.model as BaseLanguageModel
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever
const systemMessagePrompt = nodeData.inputs?.systemMessagePrompt as string
const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean
const chainOption = nodeData.inputs?.chainOption as string
const memory = nodeData.inputs?.memory
const obj: any = {
verbose: process.env.DEBUG === 'true' ? true : false,
qaChainOptions: {
type: 'stuff',
prompt: PromptTemplate.fromTemplate(systemMessagePrompt ? `${systemMessagePrompt}\n${qa_template}` : default_qa_template)
},
questionGeneratorChainOptions: {
template: CUSTOM_QUESTION_GENERATOR_CHAIN_PROMPT
}
}
if (returnSourceDocuments) obj.returnSourceDocuments = returnSourceDocuments
if (chainOption) obj.qaChainOptions = { ...obj.qaChainOptions, type: chainOption }
if (memory) {
memory.inputKey = 'question'
memory.outputKey = 'text'
memory.memoryKey = 'chat_history'
obj.memory = memory
} else {
obj.memory = new BufferMemory({
memoryKey: 'chat_history',
inputKey: 'question',
outputKey: 'text',
returnMessages: true
})
}
const chain = ConversationalRetrievalQAChain.fromLLM(model, vectorStoreRetriever, obj)
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | ICommonObject> {
const chain = nodeData.instance as ConversationalRetrievalQAChain
const returnSourceDocuments = nodeData.inputs?.returnSourceDocuments as boolean
const memory = nodeData.inputs?.memory
let model = nodeData.inputs?.model
// Temporary fix: https://github.com/hwchase17/langchainjs/issues/754
model.streaming = false
chain.questionGeneratorChain.llm = model
const obj = { question: input }
// If external memory like Zep, Redis is being used, ignore below
if (!memory && chain.memory && options && options.chatHistory) {
const chatHistory = []
const histories: IMessage[] = options.chatHistory
const memory = chain.memory as BaseChatMemory
for (const message of histories) {
if (message.type === 'apiMessage') {
chatHistory.push(new AIMessage(message.message))
} else if (message.type === 'userMessage') {
chatHistory.push(new HumanMessage(message.message))
}
}
memory.chatHistory = new ChatMessageHistory(chatHistory)
chain.memory = memory
}
if (options.socketIO && options.socketIOClientId) {
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId, undefined, returnSourceDocuments)
const res = await chain.call(obj, [handler])
if (res.text && res.sourceDocuments) return res
return res?.text
} else {
const res = await chain.call(obj)
if (res.text && res.sourceDocuments) return res
return res?.text
}
}
}
module.exports = { nodeClass: ConversationalRetrievalQAChain_Chains }