Flowise/packages/components/nodes/embeddings/HuggingFaceInferenceEmbedding/HuggingFaceInferenceEmbeddi...

64 lines
2.2 KiB
TypeScript

import { INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import { HuggingFaceInferenceEmbeddings, HuggingFaceInferenceEmbeddingsParams } from '@langchain/community/dist/embeddings/hf.cjs'
class HuggingFaceInferenceEmbedding_Embeddings implements INode {
label: string
name: string
type: string
icon: string
category: string
description: string
baseClasses: string[]
inputs: INodeParams[]
constructor() {
this.label = 'HuggingFace Inference Embeddings'
this.name = 'huggingFaceInferenceEmbeddings'
this.type = 'HuggingFaceInferenceEmbeddings'
this.icon = 'huggingface.png'
this.category = 'Embeddings'
this.description = 'HuggingFace Inference API to generate embeddings for a given text'
this.baseClasses = [this.type, ...getBaseClasses(HuggingFaceInferenceEmbeddings)]
this.inputs = [
{
label: 'HuggingFace Api Key',
name: 'apiKey',
type: 'password'
},
{
label: 'Model',
name: 'modelName',
type: 'string',
optional: true
},
{
label: 'Endpoint',
name: 'endpoint',
type: 'string',
placeholder: 'https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/sentence-transformers/all-MiniLM-L6-v2',
description: 'Using your own inference endpoint',
optional: true
}
]
}
async init(nodeData: INodeData): Promise<any> {
const apiKey = nodeData.inputs?.apiKey as string
const modelName = nodeData.inputs?.modelName as string
const endpoint = nodeData.inputs?.endpoint as string
const obj: Partial<HuggingFaceInferenceEmbeddingsParams> = {
apiKey
}
if (modelName) obj.model = modelName
if (endpoint) obj.endpointUrl = endpoint
const model = new HuggingFaceInferenceEmbeddings(obj)
return model
}
}
module.exports = { nodeClass: HuggingFaceInferenceEmbedding_Embeddings }