Flowise/packages/components/nodes/vectorstores/Meilisearch/Meilisearch.ts

175 lines
6.5 KiB
TypeScript

import { getCredentialData, getCredentialParam } from '../../../src'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { Meilisearch } from 'meilisearch'
import { MeilisearchRetriever } from './core'
import { flatten } from 'lodash'
import { Document } from '@langchain/core/documents'
import { v4 as uuidv4 } from 'uuid'
import { Embeddings } from '@langchain/core/embeddings'
class MeilisearchRetriever_node implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
badge: string
outputs: INodeOutputsValue[]
author?: string
constructor() {
this.label = 'Meilisearch'
this.name = 'meilisearch'
this.version = 1.0
this.type = 'Meilisearch'
this.icon = 'Meilisearch.png'
this.category = 'Vector Stores'
this.badge = 'NEW'
this.description = `Upsert embedded data and perform similarity search upon query using Meilisearch hybrid search functionality`
this.baseClasses = ['BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['meilisearchApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Host',
name: 'host',
type: 'string',
description: 'This is the URL for the desired Meilisearch instance'
},
{
label: 'Index Uid',
name: 'indexUid',
type: 'string',
description: 'UID for the index to answer from'
},
{
label: 'Top K',
name: 'K',
type: 'number',
description: 'number of top searches to return as context',
additionalParams: true,
optional: true
},
{
label: 'Semantic Ratio',
name: 'semanticRatio',
type: 'number',
description: 'percentage of sematic reasoning in meilisearch hybrid search',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Meilisearch Retriever',
name: 'MeilisearchRetriever',
description: 'retrieve answers',
baseClasses: this.baseClasses
}
]
this.outputs = [
{
label: 'Meilisearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const meilisearchAdminApiKey = getCredentialParam('meilisearchAdminApiKey', credentialData, nodeData)
const docs = nodeData.inputs?.document as Document[]
const host = nodeData.inputs?.host as string
const indexUid = nodeData.inputs?.indexUid as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
let embeddingDimension: number = 384
const client = new Meilisearch({
host: host,
apiKey: meilisearchAdminApiKey
})
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
const uniqueId = uuidv4()
const { pageContent, metadata } = flattenDocs[i]
const docEmbedding = await embeddings.embedQuery(pageContent)
embeddingDimension = docEmbedding.length
const documentForIndexing = {
pageContent,
metadata,
objectID: uniqueId,
_vectors: {
ollama: {
embeddings: docEmbedding,
regenerate: false
}
}
}
finalDocs.push(documentForIndexing)
}
}
let index: any
try {
index = await client.getIndex(indexUid)
} catch (error) {
console.error('Error fetching index:', error)
await client.createIndex(indexUid, { primaryKey: 'objectID' })
} finally {
index = await client.getIndex(indexUid)
}
try {
await index.updateSettings({
embedders: {
ollama: {
source: 'userProvided',
dimensions: embeddingDimension
}
}
})
await index.addDocuments(finalDocs)
} catch (error) {
console.error('Error occurred while adding documents:', error)
}
return
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const meilisearchSearchApiKey = getCredentialParam('meilisearchSearchApiKey', credentialData, nodeData)
const host = nodeData.inputs?.host as string
const indexUid = nodeData.inputs?.indexUid as string
const K = nodeData.inputs?.K as string
const semanticRatio = nodeData.inputs?.semanticRatio as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const hybridsearchretriever = new MeilisearchRetriever(host, meilisearchSearchApiKey, indexUid, K, semanticRatio, embeddings)
return hybridsearchretriever
}
}
module.exports = { nodeClass: MeilisearchRetriever_node }