Flowise/packages/components/nodes/vectorstores/MongoDBAtlas/MongoDBAtlas.ts

210 lines
7.9 KiB
TypeScript

import { flatten } from 'lodash'
import { Embeddings } from '@langchain/core/embeddings'
import { Document } from '@langchain/core/documents'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam, parseJsonBody } from '../../../src/utils'
import { addMMRInputParams, resolveVectorStoreOrRetriever } from '../VectorStoreUtils'
import { MongoDBAtlasVectorSearch } from './core'
// TODO: Add ability to specify env variable and use singleton pattern (i.e initialize MongoDB on server and pass to component)
class MongoDBAtlas_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
credential: INodeParams
outputs: INodeOutputsValue[]
constructor() {
this.label = 'MongoDB Atlas'
this.name = 'mongoDBAtlas'
this.version = 1.0
this.description = `Upsert embedded data and perform similarity or mmr search upon query using MongoDB Atlas, a managed cloud mongodb database`
this.type = 'MongoDB Atlas'
this.icon = 'mongodb.svg'
this.category = 'Vector Stores'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['mongoDBUrlApi']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Database',
name: 'databaseName',
placeholder: '<DB_NAME>',
type: 'string'
},
{
label: 'Collection Name',
name: 'collectionName',
placeholder: '<COLLECTION_NAME>',
type: 'string'
},
{
label: 'Index Name',
name: 'indexName',
placeholder: '<VECTOR_INDEX_NAME>',
type: 'string'
},
{
label: 'Content Field',
name: 'textKey',
description: 'Name of the field (column) that contains the actual content',
type: 'string',
default: 'text',
additionalParams: true,
optional: true
},
{
label: 'Embedded Field',
name: 'embeddingKey',
description: 'Name of the field (column) that contains the Embedding',
type: 'string',
default: 'embedding',
additionalParams: true,
optional: true
},
{
label: 'Mongodb Metadata Filter',
name: 'mongoMetadataFilter',
type: 'json',
optional: true,
additionalParams: true,
acceptVariable: true
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
addMMRInputParams(this.inputs)
this.outputs = [
{
label: 'MongoDB Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'MongoDB Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(MongoDBAtlasVectorSearch)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const databaseName = nodeData.inputs?.databaseName as string
const collectionName = nodeData.inputs?.collectionName as string
const indexName = nodeData.inputs?.indexName as string
let textKey = nodeData.inputs?.textKey as string
let embeddingKey = nodeData.inputs?.embeddingKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData)
const docs = nodeData.inputs?.document as Document[]
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
const document = new Document(flattenDocs[i])
finalDocs.push(document)
}
}
try {
if (!textKey || textKey === '') textKey = 'text'
if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding'
const mongoDBAtlasVectorSearch = new MongoDBAtlasVectorSearch(embeddings, {
connectionDetails: { mongoDBConnectUrl, databaseName, collectionName },
indexName,
textKey,
embeddingKey
})
await mongoDBAtlasVectorSearch.addDocuments(finalDocs)
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const databaseName = nodeData.inputs?.databaseName as string
const collectionName = nodeData.inputs?.collectionName as string
const indexName = nodeData.inputs?.indexName as string
let textKey = nodeData.inputs?.textKey as string
let embeddingKey = nodeData.inputs?.embeddingKey as string
const embeddings = nodeData.inputs?.embeddings as Embeddings
const mongoMetadataFilter = nodeData.inputs?.mongoMetadataFilter as object
let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData)
const mongoDbFilter: MongoDBAtlasVectorSearch['FilterType'] = {}
try {
if (!textKey || textKey === '') textKey = 'text'
if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding'
const vectorStore = new MongoDBAtlasVectorSearch(embeddings, {
connectionDetails: { mongoDBConnectUrl, databaseName, collectionName },
indexName,
textKey,
embeddingKey
})
if (mongoMetadataFilter) {
const metadataFilter = typeof mongoMetadataFilter === 'object' ? mongoMetadataFilter : parseJsonBody(mongoMetadataFilter)
for (const key in metadataFilter) {
mongoDbFilter.preFilter = {
...mongoDbFilter.preFilter,
[key]: {
$eq: metadataFilter[key]
}
}
}
}
return resolveVectorStoreOrRetriever(nodeData, vectorStore, mongoDbFilter)
} catch (e) {
throw new Error(e)
}
}
}
module.exports = { nodeClass: MongoDBAtlas_VectorStores }