198 lines
7.5 KiB
TypeScript
198 lines
7.5 KiB
TypeScript
import { VectaraStore, VectaraLibArgs, VectaraFilter, VectaraContextConfig, VectaraFile } from '@langchain/community/vectorstores/vectara'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { getFileFromStorage } from '../../../src'
|
|
|
|
class VectaraUpload_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Vectara Upload File'
|
|
this.name = 'vectaraUpload'
|
|
this.version = 1.0
|
|
this.type = 'Vectara'
|
|
this.icon = 'vectara.png'
|
|
this.category = 'Vector Stores'
|
|
this.description = 'Upload files to Vectara'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'DEPRECATING'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['vectaraApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'File',
|
|
name: 'file',
|
|
description:
|
|
'File to upload to Vectara. Supported file types: https://docs.vectara.com/docs/api-reference/indexing-apis/file-upload/file-upload-filetypes',
|
|
type: 'file'
|
|
},
|
|
{
|
|
label: 'Metadata Filter',
|
|
name: 'filter',
|
|
description:
|
|
'Filter to apply to Vectara metadata. Refer to the <a target="_blank" href="https://docs.flowiseai.com/vector-stores/vectara">documentation</a> on how to use Vectara filters with Flowise.',
|
|
type: 'string',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Sentences Before',
|
|
name: 'sentencesBefore',
|
|
description: 'Number of sentences to fetch before the matched sentence. Defaults to 2.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Sentences After',
|
|
name: 'sentencesAfter',
|
|
description: 'Number of sentences to fetch after the matched sentence. Defaults to 2.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Lambda',
|
|
name: 'lambda',
|
|
description:
|
|
'Improves retrieval accuracy by adjusting the balance (from 0 to 1) between neural search and keyword-based search factors.',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Defaults to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Vectara Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Vectara Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(VectaraStore)]
|
|
}
|
|
]
|
|
}
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
const customerId = getCredentialParam('customerID', credentialData, nodeData)
|
|
const corpusId = getCredentialParam('corpusID', credentialData, nodeData).split(',')
|
|
|
|
const fileBase64 = nodeData.inputs?.file
|
|
const vectaraMetadataFilter = nodeData.inputs?.filter as string
|
|
const sentencesBefore = nodeData.inputs?.sentencesBefore as number
|
|
const sentencesAfter = nodeData.inputs?.sentencesAfter as number
|
|
const lambda = nodeData.inputs?.lambda as number
|
|
const output = nodeData.outputs?.output as string
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseInt(topK, 10) : 4
|
|
|
|
const vectaraArgs: VectaraLibArgs = {
|
|
apiKey: apiKey,
|
|
customerId: customerId,
|
|
corpusId: corpusId,
|
|
source: 'flowise'
|
|
}
|
|
|
|
const vectaraFilter: VectaraFilter = {}
|
|
if (vectaraMetadataFilter) vectaraFilter.filter = vectaraMetadataFilter
|
|
if (lambda) vectaraFilter.lambda = lambda
|
|
|
|
const vectaraContextConfig: VectaraContextConfig = {}
|
|
if (sentencesBefore) vectaraContextConfig.sentencesBefore = sentencesBefore
|
|
if (sentencesAfter) vectaraContextConfig.sentencesAfter = sentencesAfter
|
|
vectaraFilter.contextConfig = vectaraContextConfig
|
|
|
|
let files: string[] = []
|
|
const vectaraFiles: VectaraFile[] = []
|
|
|
|
if (fileBase64.startsWith('FILE-STORAGE::')) {
|
|
const fileName = fileBase64.replace('FILE-STORAGE::', '')
|
|
if (fileName.startsWith('[') && fileName.endsWith(']')) {
|
|
files = JSON.parse(fileName)
|
|
} else {
|
|
files = [fileName]
|
|
}
|
|
const orgId = options.orgId
|
|
const chatflowid = options.chatflowid
|
|
|
|
for (const file of files) {
|
|
const fileData = await getFileFromStorage(file, orgId, chatflowid)
|
|
const blob = new Blob([fileData])
|
|
vectaraFiles.push({ blob: blob, fileName: getFileName(file) })
|
|
}
|
|
} else {
|
|
if (fileBase64.startsWith('[') && fileBase64.endsWith(']')) {
|
|
files = JSON.parse(fileBase64)
|
|
} else {
|
|
files = [fileBase64]
|
|
}
|
|
|
|
for (const file of files) {
|
|
const splitDataURI = file.split(',')
|
|
splitDataURI.pop()
|
|
const bf = Buffer.from(splitDataURI.pop() || '', 'base64')
|
|
const blob = new Blob([bf])
|
|
vectaraFiles.push({ blob: blob, fileName: getFileName(file) })
|
|
}
|
|
}
|
|
|
|
const vectorStore = new VectaraStore(vectaraArgs)
|
|
await vectorStore.addFiles(vectaraFiles)
|
|
|
|
if (output === 'retriever') {
|
|
const retriever = vectorStore.asRetriever(k, vectaraFilter)
|
|
return retriever
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
const getFileName = (fileBase64: string) => {
|
|
let fileNames = []
|
|
if (fileBase64.startsWith('[') && fileBase64.endsWith(']')) {
|
|
const files = JSON.parse(fileBase64)
|
|
for (const file of files) {
|
|
const splitDataURI = file.split(',')
|
|
const filename = splitDataURI[splitDataURI.length - 1].split(':')[1]
|
|
fileNames.push(filename)
|
|
}
|
|
return fileNames.join(', ')
|
|
} else {
|
|
const splitDataURI = fileBase64.split(',')
|
|
const filename = splitDataURI[splitDataURI.length - 1].split(':')[1]
|
|
return filename
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: VectaraUpload_VectorStores }
|