357 lines
13 KiB
TypeScript
357 lines
13 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { createClient, SearchOptions } from 'redis'
|
|
import { Embeddings } from '@langchain/core/embeddings'
|
|
import { RedisVectorStore, RedisVectorStoreConfig } from '@langchain/community/vectorstores/redis'
|
|
import { Document } from '@langchain/core/documents'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
import { escapeSpecialChars, unEscapeSpecialChars } from './utils'
|
|
|
|
class Redis_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Redis'
|
|
this.name = 'redis'
|
|
this.version = 1.0
|
|
this.description =
|
|
'Upsert embedded data and perform similarity search upon query using Redis, an open source, in-memory data structure store'
|
|
this.type = 'Redis'
|
|
this.icon = 'redis.svg'
|
|
this.category = 'Vector Stores'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['redisCacheUrlApi', 'redisCacheApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
placeholder: '<VECTOR_INDEX_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Replace Index on Upsert',
|
|
name: 'replaceIndex',
|
|
description: 'Selecting this option will delete the existing index and recreate a new one when upserting',
|
|
default: false,
|
|
type: 'boolean'
|
|
},
|
|
{
|
|
label: 'Content Field',
|
|
name: 'contentKey',
|
|
description: 'Name of the field (column) that contains the actual content',
|
|
type: 'string',
|
|
default: 'content',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Metadata Field',
|
|
name: 'metadataKey',
|
|
description: 'Name of the field (column) that contains the metadata of the document',
|
|
type: 'string',
|
|
default: 'metadata',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Vector Field',
|
|
name: 'vectorKey',
|
|
description: 'Name of the field (column) that contains the vector',
|
|
type: 'string',
|
|
default: 'content_vector',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Redis Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Redis Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(RedisVectorStore)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
let contentKey = nodeData.inputs?.contentKey as string
|
|
let metadataKey = nodeData.inputs?.metadataKey as string
|
|
let vectorKey = nodeData.inputs?.vectorKey as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const replaceIndex = nodeData.inputs?.replaceIndex as boolean
|
|
|
|
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
|
|
if (!redisUrl || redisUrl === '') {
|
|
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
|
|
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
|
|
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
|
|
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
|
|
|
|
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
|
|
}
|
|
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
const document = new Document(flattenDocs[i])
|
|
finalDocs.push(document)
|
|
}
|
|
}
|
|
|
|
try {
|
|
const redisClient = createClient({
|
|
url: redisUrl,
|
|
socket: {
|
|
keepAlive:
|
|
process.env.REDIS_KEEP_ALIVE && !isNaN(parseInt(process.env.REDIS_KEEP_ALIVE, 10))
|
|
? parseInt(process.env.REDIS_KEEP_ALIVE, 10)
|
|
: undefined // milliseconds
|
|
}
|
|
})
|
|
await redisClient.connect()
|
|
|
|
const storeConfig: RedisVectorStoreConfig = {
|
|
redisClient: redisClient,
|
|
indexName: indexName
|
|
}
|
|
const isIndexExists = await checkIndexExists(redisClient, indexName)
|
|
if (replaceIndex && isIndexExists) {
|
|
let response = await redisClient.ft.dropIndex(indexName)
|
|
if (process.env.DEBUG === 'true') {
|
|
// eslint-disable-next-line no-console
|
|
console.log(`Redis Vector Store :: Dropping index [${indexName}], Received Response [${response}]`)
|
|
}
|
|
}
|
|
const vectorStore = await RedisVectorStore.fromDocuments(finalDocs, embeddings, storeConfig)
|
|
|
|
if (!contentKey || contentKey === '') contentKey = 'content'
|
|
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
|
|
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
|
|
|
|
// Avoid Illegal invocation error
|
|
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: any) => {
|
|
return await similaritySearchVectorWithScore(
|
|
query,
|
|
k,
|
|
indexName,
|
|
metadataKey,
|
|
vectorKey,
|
|
contentKey,
|
|
redisClient,
|
|
filter
|
|
)
|
|
}
|
|
|
|
await redisClient.quit()
|
|
|
|
return { numAdded: finalDocs.length, addedDocs: finalDocs }
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
let contentKey = nodeData.inputs?.contentKey as string
|
|
let metadataKey = nodeData.inputs?.metadataKey as string
|
|
let vectorKey = nodeData.inputs?.vectorKey as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseFloat(topK) : 4
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
let redisUrl = getCredentialParam('redisUrl', credentialData, nodeData)
|
|
if (!redisUrl || redisUrl === '') {
|
|
const username = getCredentialParam('redisCacheUser', credentialData, nodeData)
|
|
const password = getCredentialParam('redisCachePwd', credentialData, nodeData)
|
|
const portStr = getCredentialParam('redisCachePort', credentialData, nodeData)
|
|
const host = getCredentialParam('redisCacheHost', credentialData, nodeData)
|
|
|
|
redisUrl = 'redis://' + username + ':' + password + '@' + host + ':' + portStr
|
|
}
|
|
|
|
const redisClient = createClient({
|
|
url: redisUrl,
|
|
socket: {
|
|
keepAlive:
|
|
process.env.REDIS_KEEP_ALIVE && !isNaN(parseInt(process.env.REDIS_KEEP_ALIVE, 10))
|
|
? parseInt(process.env.REDIS_KEEP_ALIVE, 10)
|
|
: undefined // milliseconds
|
|
}
|
|
})
|
|
|
|
const storeConfig: RedisVectorStoreConfig = {
|
|
redisClient: redisClient,
|
|
indexName: indexName
|
|
}
|
|
|
|
const vectorStore = new RedisVectorStore(embeddings, storeConfig)
|
|
|
|
if (!contentKey || contentKey === '') contentKey = 'content'
|
|
if (!metadataKey || metadataKey === '') metadataKey = 'metadata'
|
|
if (!vectorKey || vectorKey === '') vectorKey = 'content_vector'
|
|
|
|
// Avoid Illegal invocation error
|
|
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number, filter?: any) => {
|
|
await redisClient.connect()
|
|
const results = await similaritySearchVectorWithScore(
|
|
query,
|
|
k,
|
|
indexName,
|
|
metadataKey,
|
|
vectorKey,
|
|
contentKey,
|
|
redisClient,
|
|
filter
|
|
)
|
|
await redisClient.quit()
|
|
return results
|
|
}
|
|
|
|
if (output === 'retriever') {
|
|
return vectorStore.asRetriever(k)
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
const checkIndexExists = async (redisClient: ReturnType<typeof createClient>, indexName: string) => {
|
|
try {
|
|
await redisClient.ft.info(indexName)
|
|
} catch (err: any) {
|
|
if (err?.message.includes('unknown command')) {
|
|
throw new Error(
|
|
'Failed to run FT.INFO command. Please ensure that you are running a RediSearch-capable Redis instance: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/redis#setup'
|
|
)
|
|
}
|
|
// index doesn't exist
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
const buildQuery = (
|
|
query: number[],
|
|
k: number,
|
|
metadataKey: string,
|
|
vectorKey: string,
|
|
contentKey: string,
|
|
filter?: string[]
|
|
): [string, SearchOptions] => {
|
|
const vectorScoreField = 'vector_score'
|
|
|
|
let hybridFields = '*'
|
|
// if a filter is set, modify the hybrid query
|
|
if (filter && filter.length) {
|
|
// `filter` is a list of strings, then it's applied using the OR operator in the metadata key
|
|
hybridFields = `@${metadataKey}:(${filter.map(escapeSpecialChars).join('|')})`
|
|
}
|
|
|
|
const baseQuery = `${hybridFields} => [KNN ${k} @${vectorKey} $vector AS ${vectorScoreField}]`
|
|
const returnFields = [metadataKey, contentKey, vectorScoreField]
|
|
|
|
const options: SearchOptions = {
|
|
PARAMS: {
|
|
vector: Buffer.from(new Float32Array(query).buffer)
|
|
},
|
|
RETURN: returnFields,
|
|
SORTBY: vectorScoreField,
|
|
DIALECT: 2,
|
|
LIMIT: {
|
|
from: 0,
|
|
size: k
|
|
}
|
|
}
|
|
|
|
return [baseQuery, options]
|
|
}
|
|
|
|
const similaritySearchVectorWithScore = async (
|
|
query: number[],
|
|
k: number,
|
|
indexName: string,
|
|
metadataKey: string,
|
|
vectorKey: string,
|
|
contentKey: string,
|
|
redisClient: ReturnType<typeof createClient>,
|
|
filter?: string[]
|
|
): Promise<[Document, number][]> => {
|
|
const results = await redisClient.ft.search(indexName, ...buildQuery(query, k, metadataKey, vectorKey, contentKey, filter))
|
|
const result: [Document, number][] = []
|
|
|
|
if (results.total) {
|
|
for (const res of results.documents) {
|
|
if (res.value) {
|
|
const document = res.value
|
|
if (document.vector_score) {
|
|
const metadataString = unEscapeSpecialChars(document[metadataKey] as string)
|
|
result.push([
|
|
new Document({
|
|
pageContent: document[contentKey] as string,
|
|
metadata: JSON.parse(metadataString)
|
|
}),
|
|
Number(document.vector_score)
|
|
])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
module.exports = { nodeClass: Redis_VectorStores }
|