Flowise/packages/components/nodes/documentloaders/MicrosoftWord/WordLoader.ts

109 lines
3.9 KiB
TypeScript

import { Document } from '@langchain/core/documents'
import { BufferLoader } from 'langchain/document_loaders/fs/buffer'
import { parseOfficeAsync } from 'officeparser'
/**
* Document loader that uses officeparser to load Word documents.
*
* The document is parsed into a single Document with metadata including
* document type and extracted text content.
*/
export class WordLoader extends BufferLoader {
attributes: { name: string; description: string; type: string }[] = []
constructor(filePathOrBlob: string | Blob) {
super(filePathOrBlob)
this.attributes = []
}
/**
* Parse Word document
*
* @param raw Raw data Buffer
* @param metadata Document metadata
* @returns Array of Documents
*/
async parse(raw: Buffer, metadata: Document['metadata']): Promise<Document[]> {
const result: Document[] = []
this.attributes = [
{ name: 'documentType', description: 'Type of document', type: 'string' },
{ name: 'pageCount', description: 'Number of pages/sections', type: 'number' }
]
try {
// Use officeparser to extract text from Word document
const data = await parseOfficeAsync(raw)
if (typeof data === 'string' && data.trim()) {
// Split content by common page/section separators
const sections = this.splitIntoSections(data)
sections.forEach((sectionContent, index) => {
if (sectionContent.trim()) {
result.push({
pageContent: sectionContent.trim(),
metadata: {
documentType: 'word',
pageNumber: index + 1,
...metadata
}
})
}
})
}
} catch (error) {
console.error('Error parsing Word file:', error)
throw new Error(`Failed to parse Word file: ${error instanceof Error ? error.message : 'Unknown error'}`)
}
return result
}
/**
* Split content into sections based on common patterns
* This is a heuristic approach since officeparser returns plain text
*/
private splitIntoSections(content: string): string[] {
// Try to split by common section patterns
const sectionPatterns = [
/\n\s*Page\s+\d+/gi,
/\n\s*Section\s+\d+/gi,
/\n\s*Chapter\s+\d+/gi,
/\n\s*\d+\.\s+/gi, // Numbered sections like "1. ", "2. "
/\n\s*[A-Z][A-Z\s]{2,}\n/g, // ALL CAPS headings
/\n\s*_{5,}/g, // Long underscores as separators
/\n\s*-{5,}/g // Long dashes as separators
]
let sections: string[] = []
// Try each pattern and use the one that creates the most reasonable splits
for (const pattern of sectionPatterns) {
const potentialSections = content.split(pattern)
if (potentialSections.length > 1 && potentialSections.length < 50) {
// Reasonable number of sections
sections = potentialSections
break
}
}
// If no good pattern found, split by multiple newlines as a fallback
if (sections.length === 0) {
sections = content.split(/\n\s*\n\s*\n\s*\n/)
}
// If still no good split, split by double newlines
if (sections.length === 0 || sections.every((section) => section.trim().length < 20)) {
sections = content.split(/\n\s*\n\s*\n/)
}
// If still no good split, treat entire content as one section
if (sections.length === 0 || sections.every((section) => section.trim().length < 10)) {
sections = [content]
}
return sections.filter((section) => section.trim().length > 0)
}
}