Flowise/packages/components/nodes/vectorstores/Faiss/Faiss.ts

147 lines
5.1 KiB
TypeScript

import { flatten } from 'lodash'
import { Document } from '@langchain/core/documents'
import { FaissStore } from '@langchain/community/vectorstores/faiss'
import { Embeddings } from '@langchain/core/embeddings'
import { INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
class Faiss_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Faiss'
this.name = 'faiss'
this.version = 1.0
this.type = 'Faiss'
this.icon = 'faiss.svg'
this.category = 'Vector Stores'
this.description = 'Upsert embedded data and perform similarity search upon query using Faiss library from Meta'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Base Path to load',
name: 'basePath',
description: 'Path to load faiss.index file',
placeholder: `C:\\Users\\User\\Desktop`,
type: 'string'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'Faiss Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Faiss Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(FaissStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData): Promise<Partial<IndexingResult>> {
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const basePath = nodeData.inputs?.basePath as string
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
const vectorStore = await FaissStore.fromDocuments(finalDocs, embeddings)
await vectorStore.save(basePath)
// Avoid illegal invocation error
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number) => {
return await similaritySearchVectorWithScore(query, k, vectorStore)
}
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData): Promise<any> {
const embeddings = nodeData.inputs?.embeddings as Embeddings
const basePath = nodeData.inputs?.basePath as string
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const vectorStore = await FaissStore.load(basePath, embeddings)
// Avoid illegal invocation error
vectorStore.similaritySearchVectorWithScore = async (query: number[], k: number) => {
return await similaritySearchVectorWithScore(query, k, vectorStore)
}
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
const similaritySearchVectorWithScore = async (query: number[], k: number, vectorStore: FaissStore) => {
const index = vectorStore.index
if (k > index.ntotal()) {
const total = index.ntotal()
console.warn(`k (${k}) is greater than the number of elements in the index (${total}), setting k to ${total}`)
k = total
}
const result = index.search(query, k)
return result.labels.map((id, index) => {
const uuid = vectorStore._mapping[id]
return [vectorStore.docstore.search(uuid), result.distances[index]] as [Document, number]
})
}
module.exports = { nodeClass: Faiss_VectorStores }