166 lines
5.7 KiB
TypeScript
166 lines
5.7 KiB
TypeScript
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { Document } from 'langchain/document'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src'
|
|
|
|
import { Client, ClientOptions } from '@elastic/elasticsearch'
|
|
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
|
|
import { flatten } from 'lodash'
|
|
|
|
class ElasicsearchUpsert_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Elasticsearch Upsert Document'
|
|
this.name = 'ElasticsearchUpsert'
|
|
this.version = 1.0
|
|
this.type = 'Elasticsearch'
|
|
this.icon = 'elasticsearch.png'
|
|
this.category = 'Vector Stores'
|
|
this.description = 'Upsert documents to Elasticsearch'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
placeholder: '<INDEX_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Similarity',
|
|
name: 'similarity',
|
|
description: 'Similarity measure used in Elasticsearch.',
|
|
type: 'options',
|
|
default: 'l2_norm',
|
|
options: [
|
|
{
|
|
label: 'l2_norm',
|
|
name: 'l2_norm'
|
|
},
|
|
{
|
|
label: 'dot_product',
|
|
name: 'dot_product'
|
|
},
|
|
{
|
|
label: 'cosine',
|
|
name: 'cosine'
|
|
}
|
|
],
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Elasticsearch Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'Elasticsearch Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
|
|
}
|
|
]
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
|
|
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseFloat(topK) : 4
|
|
const output = nodeData.outputs?.output as string
|
|
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
|
|
|
|
// eslint-disable-next-line no-console
|
|
console.log('EndPoint:: ' + endPoint + ', APIKey:: ' + apiKey + ', Index:: ' + indexName)
|
|
|
|
const elasticSearchClientOptions: ClientOptions = {
|
|
node: endPoint,
|
|
auth: {
|
|
apiKey: apiKey
|
|
}
|
|
}
|
|
let vectorSearchOptions = {}
|
|
switch (similarityMeasure) {
|
|
case 'dot_product':
|
|
vectorSearchOptions = {
|
|
similarity: 'dot_product'
|
|
}
|
|
break
|
|
case 'cosine':
|
|
vectorSearchOptions = {
|
|
similarity: 'cosine'
|
|
}
|
|
break
|
|
default:
|
|
vectorSearchOptions = {
|
|
similarity: 'l2_norm'
|
|
}
|
|
}
|
|
const elasticSearchClientArgs: ElasticClientArgs = {
|
|
client: new Client(elasticSearchClientOptions),
|
|
indexName: indexName,
|
|
vectorSearchOptions: vectorSearchOptions
|
|
}
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
finalDocs.push(new Document(flattenDocs[i]))
|
|
}
|
|
|
|
const vectorStore = await ElasticVectorSearch.fromDocuments(finalDocs, embeddings, elasticSearchClientArgs)
|
|
|
|
if (output === 'retriever') {
|
|
return vectorStore.asRetriever(k)
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: ElasicsearchUpsert_VectorStores }
|