Flowise/packages/components/nodes/chains/ConversationalRetrievalQAChain/ConversationalRetrievalQACh...

96 lines
3.0 KiB
TypeScript

import { ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import { ConversationalRetrievalQAChain } from 'langchain/chains'
import { BaseLLM } from 'langchain/llms/base'
import { BaseRetriever } from 'langchain/schema'
class ConversationalRetrievalQAChain_Chains implements INode {
label: string
name: string
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
constructor() {
this.label = 'Conversational Retrieval QA Chain'
this.name = 'conversationalRetrievalQAChain'
this.type = 'ConversationalRetrievalQAChain'
this.icon = 'chain.svg'
this.category = 'Chains'
this.description = 'Document QA - built on RetrievalQAChain to provide a chat history component'
this.baseClasses = [this.type, ...getBaseClasses(ConversationalRetrievalQAChain)]
this.inputs = [
{
label: 'LLM',
name: 'llm',
type: 'BaseLLM'
},
{
label: 'Vector Store Retriever',
name: 'vectorStoreRetriever',
type: 'BaseRetriever'
}
]
}
async init(nodeData: INodeData): Promise<any> {
const llm = nodeData.inputs?.llm as BaseLLM
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever
const chain = ConversationalRetrievalQAChain.fromLLM(llm, vectorStoreRetriever)
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string> {
const chain = nodeData.instance as ConversationalRetrievalQAChain
let chatHistory = ''
if (options && options.chatHistory) {
const histories: IMessage[] = options.chatHistory
chatHistory = histories
.map((item) => {
return item.message
})
.join('')
}
const obj = {
question: input,
chat_history: chatHistory ? chatHistory : []
}
const res = await chain.call(obj)
return res?.text
}
jsCodeImport(): string {
return `import { ConversationalRetrievalQAChain } from 'langchain/chains'`
}
jsCode(nodeData: INodeData): string {
const llm = nodeData.inputs?.llm as string
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as string
const code = `const input = "<your question>"
const chatHistory = "<your chat history>"
const llm = ${llm}
${vectorStoreRetriever}
const chain = await ConversationalRetrievalQAChain.fromLLM(llm, vectorStoreRetriever)
const result = await chain.call({
question: input,
chat_history: chatHistory ? chatHistory : []
})
console.log(result)
`
return code
}
}
module.exports = { nodeClass: ConversationalRetrievalQAChain_Chains }