Flowise/packages/components/nodes/chains/ConversationChain/ConversationChain.ts

162 lines
5.9 KiB
TypeScript

import { FlowiseMemory, ICommonObject, IMessage, INode, INodeData, INodeParams } from '../../../src/Interface'
import { ConversationChain } from 'langchain/chains'
import { getBaseClasses } from '../../../src/utils'
import { ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate } from 'langchain/prompts'
import { BaseChatModel } from 'langchain/chat_models/base'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { flatten } from 'lodash'
import { Document } from 'langchain/document'
import { RunnableSequence } from 'langchain/schema/runnable'
import { StringOutputParser } from 'langchain/schema/output_parser'
let systemMessage = `The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.`
const inputKey = 'input'
class ConversationChain_Chains implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
sessionId?: string
constructor(fields?: { sessionId?: string }) {
this.label = 'Conversation Chain'
this.name = 'conversationChain'
this.version = 1.0
this.type = 'ConversationChain'
this.icon = 'conv.svg'
this.category = 'Chains'
this.description = 'Chat models specific conversational chain with memory'
this.baseClasses = [this.type, ...getBaseClasses(ConversationChain)]
this.inputs = [
{
label: 'Chat Model',
name: 'model',
type: 'BaseChatModel'
},
{
label: 'Memory',
name: 'memory',
type: 'BaseMemory'
},
{
label: 'Document',
name: 'document',
type: 'Document',
description:
'Include whole document into the context window, if you get maximum context length error, please use model with higher context window like Claude 100k, or gpt4 32k',
optional: true,
list: true
},
{
label: 'System Message',
name: 'systemMessagePrompt',
type: 'string',
rows: 4,
additionalParams: true,
optional: true,
placeholder: 'You are a helpful assistant that write codes'
}
]
this.sessionId = fields?.sessionId
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const chain = prepareChain(nodeData, this.sessionId, options.chatHistory)
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string> {
const memory = nodeData.inputs?.memory
const chain = prepareChain(nodeData, this.sessionId, options.chatHistory)
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
let res = ''
if (options.socketIO && options.socketIOClientId) {
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
res = await chain.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
} else {
res = await chain.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
}
await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: res,
type: 'apiMessage'
}
],
this.sessionId
)
return res
}
}
const prepareChatPrompt = (nodeData: INodeData) => {
const memory = nodeData.inputs?.memory as FlowiseMemory
const prompt = nodeData.inputs?.systemMessagePrompt as string
const docs = nodeData.inputs?.document as Document[]
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
let finalText = ''
for (let i = 0; i < finalDocs.length; i += 1) {
finalText += finalDocs[i].pageContent
}
const replaceChar: string[] = ['{', '}']
for (const char of replaceChar) finalText = finalText.replaceAll(char, '')
if (finalText) systemMessage = `${systemMessage}\nThe AI has the following context:\n${finalText}`
const chatPrompt = ChatPromptTemplate.fromMessages([
SystemMessagePromptTemplate.fromTemplate(prompt ? `${prompt}\n${systemMessage}` : systemMessage),
new MessagesPlaceholder(memory.memoryKey ?? 'chat_history'),
HumanMessagePromptTemplate.fromTemplate(`{${inputKey}}`)
])
return chatPrompt
}
const prepareChain = (nodeData: INodeData, sessionId?: string, chatHistory: IMessage[] = []) => {
const model = nodeData.inputs?.model as BaseChatModel
const memory = nodeData.inputs?.memory as FlowiseMemory
const memoryKey = memory.memoryKey ?? 'chat_history'
const conversationChain = RunnableSequence.from([
{
[inputKey]: (input: { input: string }) => input.input,
[memoryKey]: async () => {
const history = await memory.getChatMessages(sessionId, true, chatHistory)
return history
}
},
prepareChatPrompt(nodeData),
model,
new StringOutputParser()
])
return conversationChain
}
module.exports = { nodeClass: ConversationChain_Chains }