143 lines
5.1 KiB
TypeScript
143 lines
5.1 KiB
TypeScript
import { TextSplitter } from 'langchain/text_splitter'
|
|
import { WordLoader } from './WordLoader'
|
|
import { getFileFromStorage, handleDocumentLoaderDocuments, handleDocumentLoaderMetadata, handleDocumentLoaderOutput } from '../../../src'
|
|
import { ICommonObject, IDocument, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
|
|
class MicrosoftWord_DocumentLoaders implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'Microsoft Word'
|
|
this.name = 'microsoftWord'
|
|
this.version = 1.0
|
|
this.type = 'Document'
|
|
this.icon = 'word.svg'
|
|
this.category = 'Document Loaders'
|
|
this.description = `Load data from Microsoft Word files`
|
|
this.baseClasses = [this.type]
|
|
this.inputs = [
|
|
{
|
|
label: 'Word File',
|
|
name: 'docxFile',
|
|
type: 'file',
|
|
fileType: '.docx, .doc'
|
|
},
|
|
{
|
|
label: 'Text Splitter',
|
|
name: 'textSplitter',
|
|
type: 'TextSplitter',
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Additional Metadata',
|
|
name: 'metadata',
|
|
type: 'json',
|
|
description: 'Additional metadata to be added to the extracted documents',
|
|
optional: true,
|
|
additionalParams: true
|
|
},
|
|
{
|
|
label: 'Omit Metadata Keys',
|
|
name: 'omitMetadataKeys',
|
|
type: 'string',
|
|
rows: 4,
|
|
description:
|
|
'Each document loader comes with a default set of metadata keys that are extracted from the document. You can use this field to omit some of the default metadata keys. The value should be a list of keys, seperated by comma. Use * to omit all metadata keys execept the ones you specify in the Additional Metadata field',
|
|
placeholder: 'key1, key2, key3.nestedKey1',
|
|
optional: true,
|
|
additionalParams: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
description: 'Array of document objects containing metadata and pageContent',
|
|
baseClasses: [...this.baseClasses, 'json']
|
|
},
|
|
{
|
|
label: 'Text',
|
|
name: 'text',
|
|
description: 'Concatenated string from pageContent of documents',
|
|
baseClasses: ['string', 'json']
|
|
}
|
|
]
|
|
}
|
|
|
|
getFiles(nodeData: INodeData) {
|
|
const docxFileBase64 = nodeData.inputs?.docxFile as string
|
|
|
|
let files: string[] = []
|
|
let fromStorage: boolean = true
|
|
|
|
if (docxFileBase64.startsWith('FILE-STORAGE::')) {
|
|
const fileName = docxFileBase64.replace('FILE-STORAGE::', '')
|
|
if (fileName.startsWith('[') && fileName.endsWith(']')) {
|
|
files = JSON.parse(fileName)
|
|
} else {
|
|
files = [fileName]
|
|
}
|
|
} else {
|
|
if (docxFileBase64.startsWith('[') && docxFileBase64.endsWith(']')) {
|
|
files = JSON.parse(docxFileBase64)
|
|
} else {
|
|
files = [docxFileBase64]
|
|
}
|
|
|
|
fromStorage = false
|
|
}
|
|
|
|
return { files, fromStorage }
|
|
}
|
|
|
|
async getFileData(file: string, { orgId, chatflowid }: { orgId: string; chatflowid: string }, fromStorage?: boolean) {
|
|
if (fromStorage) {
|
|
return getFileFromStorage(file, orgId, chatflowid)
|
|
} else {
|
|
const splitDataURI = file.split(',')
|
|
splitDataURI.pop()
|
|
return Buffer.from(splitDataURI.pop() || '', 'base64')
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const textSplitter = nodeData.inputs?.textSplitter as TextSplitter
|
|
const metadata = nodeData.inputs?.metadata
|
|
const output = nodeData.outputs?.output as string
|
|
const _omitMetadataKeys = nodeData.inputs?.omitMetadataKeys as string
|
|
|
|
let docs: IDocument[] = []
|
|
|
|
const orgId = options.orgId
|
|
const chatflowid = options.chatflowid
|
|
|
|
const { files, fromStorage } = this.getFiles(nodeData)
|
|
|
|
for (const file of files) {
|
|
if (!file) continue
|
|
|
|
const fileData = await this.getFileData(file, { orgId, chatflowid }, fromStorage)
|
|
const blob = new Blob([fileData])
|
|
const loader = new WordLoader(blob)
|
|
|
|
// use spread instead of push, because it raises RangeError: Maximum call stack size exceeded when too many docs
|
|
docs = [...docs, ...(await handleDocumentLoaderDocuments(loader, textSplitter))]
|
|
}
|
|
|
|
docs = handleDocumentLoaderMetadata(docs, _omitMetadataKeys, metadata)
|
|
|
|
return handleDocumentLoaderOutput(docs, output)
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: MicrosoftWord_DocumentLoaders }
|