Flowise/packages/components/nodes/vectorstores/OpenSearch/OpenSearch.ts

158 lines
5.6 KiB
TypeScript

import { flatten } from 'lodash'
import { Client } from '@opensearch-project/opensearch'
import { Document } from '@langchain/core/documents'
import { OpenSearchVectorStore } from '@langchain/community/vectorstores/opensearch'
import { Embeddings } from '@langchain/core/embeddings'
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams, IndexingResult } from '../../../src/Interface'
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
class OpenSearch_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
badge: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
credential: INodeParams
constructor() {
this.label = 'OpenSearch'
this.name = 'openSearch'
this.version = 3.0
this.type = 'OpenSearch'
this.icon = 'opensearch.svg'
this.category = 'Vector Stores'
this.description = `Upsert embedded data and perform similarity search upon query using OpenSearch, an open-source, all-in-one vector database`
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.credential = {
label: 'Connect Credential',
name: 'credential',
type: 'credential',
credentialNames: ['openSearchUrl']
}
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true,
optional: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'Index Name',
name: 'indexName',
type: 'string'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'OpenSearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'OpenSearch Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)]
}
]
}
//@ts-ignore
vectorStoreMethods = {
async upsert(nodeData: INodeData, options: ICommonObject): Promise<Partial<IndexingResult>> {
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const indexName = nodeData.inputs?.indexName as string
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const opensearchURL = getCredentialParam('openSearchUrl', credentialData, nodeData)
const user = getCredentialParam('user', credentialData, nodeData)
const password = getCredentialParam('password', credentialData, nodeData)
const client = getOpenSearchClient(opensearchURL, user, password)
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
if (flattenDocs[i] && flattenDocs[i].pageContent) {
finalDocs.push(new Document(flattenDocs[i]))
}
}
try {
await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, {
client,
indexName: indexName
})
return { numAdded: finalDocs.length, addedDocs: finalDocs }
} catch (e) {
throw new Error(e)
}
}
}
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
const embeddings = nodeData.inputs?.embeddings as Embeddings
const indexName = nodeData.inputs?.indexName as string
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
const opensearchURL = getCredentialParam('openSearchUrl', credentialData, nodeData)
const user = getCredentialParam('user', credentialData, nodeData)
const password = getCredentialParam('password', credentialData, nodeData)
const client = getOpenSearchClient(opensearchURL, user, password)
const vectorStore = new OpenSearchVectorStore(embeddings, {
client,
indexName
})
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
const getOpenSearchClient = (url: string, user?: string, password?: string): Client => {
if (user && password) {
const urlObj = new URL(url)
urlObj.username = user
urlObj.password = password
url = urlObj.toString()
}
return new Client({
nodes: [url]
})
}
module.exports = { nodeClass: OpenSearch_VectorStores }