Flowise/packages/components/nodes/vectorstores/VectorStoreUtils.ts

102 lines
3.4 KiB
TypeScript

import { INodeData } from '../../src'
import { VectorStore } from '@langchain/core/vectorstores'
export const resolveVectorStoreOrRetriever = (
nodeData: INodeData,
vectorStore: VectorStore,
metadataFilter?: string | object | undefined
) => {
const output = nodeData.outputs?.output as string
const searchType = nodeData.outputs?.searchType as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
// If it is already pre-defined in lc_kwargs, then don't pass it again
const filter = vectorStore?.lc_kwargs?.filter ? undefined : metadataFilter
if (output === 'retriever') {
if ('mmr' === searchType) {
const fetchK = nodeData.inputs?.fetchK as string
const lambda = nodeData.inputs?.lambda as string
const f = fetchK ? parseInt(fetchK) : 20
const l = lambda ? parseFloat(lambda) : 0.5
return vectorStore.asRetriever({
searchType: 'mmr',
k: k,
filter,
searchKwargs: {
fetchK: f,
lambda: l
}
})
} else {
// "searchType" is "similarity"
return vectorStore.asRetriever(k, filter)
}
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
;(vectorStore as any).filter = filter
return vectorStore
}
}
export const addMMRInputParams = (inputs: any[]) => {
const mmrInputParams = [
{
label: 'Search Type',
name: 'searchType',
type: 'options',
default: 'similarity',
options: [
{
label: 'Similarity',
name: 'similarity'
},
{
label: 'Max Marginal Relevance',
name: 'mmr'
}
],
additionalParams: true,
optional: true
},
{
label: 'Fetch K (for MMR Search)',
name: 'fetchK',
description: 'Number of initial documents to fetch for MMR reranking. Default to 20. Used only when the search type is MMR',
placeholder: '20',
type: 'number',
additionalParams: true,
optional: true
},
{
label: 'Lambda (for MMR Search)',
name: 'lambda',
description:
'Number between 0 and 1 that determines the degree of diversity among the results, where 0 corresponds to maximum diversity and 1 to minimum diversity. Used only when the search type is MMR',
placeholder: '0.5',
type: 'number',
additionalParams: true,
optional: true
}
]
inputs.push(...mmrInputParams)
}
export const howToUseFileUpload = `
**File Upload**
This allows file upload on the chat. Uploaded files will be upserted on the fly to the vector store.
**Note:**
- You can only turn on file upload for one vector store at a time.
- At least one Document Loader node should be connected to the document input.
- Document Loader should be file types like PDF, DOCX, TXT, etc.
**How it works**
- Uploaded files will have the metadata updated with the chatId.
- This will allow the file to be associated with the chatId.
- When querying, metadata will be filtered by chatId to retrieve files associated with the chatId.
`