633 lines
22 KiB
TypeScript
633 lines
22 KiB
TypeScript
import {
|
|
EnhancedGenerateContentResponse,
|
|
Content,
|
|
Part,
|
|
type FunctionDeclarationsTool as GoogleGenerativeAIFunctionDeclarationsTool,
|
|
type FunctionDeclaration as GenerativeAIFunctionDeclaration,
|
|
POSSIBLE_ROLES,
|
|
FunctionCallPart,
|
|
TextPart,
|
|
FileDataPart,
|
|
InlineDataPart
|
|
} from '@google/generative-ai'
|
|
import {
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
ToolMessage,
|
|
ToolMessageChunk,
|
|
MessageContent,
|
|
MessageContentComplex,
|
|
UsageMetadata,
|
|
isAIMessage,
|
|
isBaseMessage,
|
|
isToolMessage,
|
|
StandardContentBlockConverter,
|
|
parseBase64DataUrl,
|
|
convertToProviderContentBlock,
|
|
isDataContentBlock
|
|
} from '@langchain/core/messages'
|
|
import { ChatGeneration, ChatGenerationChunk, ChatResult } from '@langchain/core/outputs'
|
|
import { isLangChainTool } from '@langchain/core/utils/function_calling'
|
|
import { isOpenAITool } from '@langchain/core/language_models/base'
|
|
import { ToolCallChunk } from '@langchain/core/messages/tool'
|
|
import { v4 as uuidv4 } from 'uuid'
|
|
import { jsonSchemaToGeminiParameters, schemaToGenerativeAIParameters } from './zod_to_genai_parameters.js'
|
|
import { GoogleGenerativeAIToolType } from './types.js'
|
|
|
|
export function getMessageAuthor(message: BaseMessage) {
|
|
const type = message._getType()
|
|
if (ChatMessage.isInstance(message)) {
|
|
return message.role
|
|
}
|
|
if (type === 'tool') {
|
|
return type
|
|
}
|
|
return message.name ?? type
|
|
}
|
|
|
|
/**
|
|
* !!! IMPORTANT: Must return 'user' as default instead of throwing error
|
|
* https://github.com/FlowiseAI/Flowise/issues/4743
|
|
* Maps a message type to a Google Generative AI chat author.
|
|
* @param message The message to map.
|
|
* @param model The model to use for mapping.
|
|
* @returns The message type mapped to a Google Generative AI chat author.
|
|
*/
|
|
export function convertAuthorToRole(author: string): (typeof POSSIBLE_ROLES)[number] {
|
|
switch (author) {
|
|
/**
|
|
* Note: Gemini currently is not supporting system messages
|
|
* we will convert them to human messages and merge with following
|
|
* */
|
|
case 'supervisor':
|
|
case 'ai':
|
|
case 'model': // getMessageAuthor returns message.name. code ex.: return message.name ?? type;
|
|
return 'model'
|
|
case 'system':
|
|
return 'system'
|
|
case 'human':
|
|
return 'user'
|
|
case 'tool':
|
|
case 'function':
|
|
return 'function'
|
|
default:
|
|
return 'user' // return user as default instead of throwing error
|
|
}
|
|
}
|
|
|
|
function messageContentMedia(content: MessageContentComplex): Part {
|
|
if ('mimeType' in content && 'data' in content) {
|
|
return {
|
|
inlineData: {
|
|
mimeType: content.mimeType,
|
|
data: content.data
|
|
}
|
|
}
|
|
}
|
|
if ('mimeType' in content && 'fileUri' in content) {
|
|
return {
|
|
fileData: {
|
|
mimeType: content.mimeType,
|
|
fileUri: content.fileUri
|
|
}
|
|
}
|
|
}
|
|
|
|
throw new Error('Invalid media content')
|
|
}
|
|
|
|
function inferToolNameFromPreviousMessages(message: ToolMessage | ToolMessageChunk, previousMessages: BaseMessage[]): string | undefined {
|
|
return previousMessages
|
|
.map((msg) => {
|
|
if (isAIMessage(msg)) {
|
|
return msg.tool_calls ?? []
|
|
}
|
|
return []
|
|
})
|
|
.flat()
|
|
.find((toolCall) => {
|
|
return toolCall.id === message.tool_call_id
|
|
})?.name
|
|
}
|
|
|
|
function _getStandardContentBlockConverter(isMultimodalModel: boolean) {
|
|
const standardContentBlockConverter: StandardContentBlockConverter<{
|
|
text: TextPart
|
|
image: FileDataPart | InlineDataPart
|
|
audio: FileDataPart | InlineDataPart
|
|
file: FileDataPart | InlineDataPart | TextPart
|
|
}> = {
|
|
providerName: 'Google Gemini',
|
|
|
|
fromStandardTextBlock(block) {
|
|
return {
|
|
text: block.text
|
|
}
|
|
},
|
|
|
|
fromStandardImageBlock(block): FileDataPart | InlineDataPart {
|
|
if (!isMultimodalModel) {
|
|
throw new Error('This model does not support images')
|
|
}
|
|
if (block.source_type === 'url') {
|
|
const data = parseBase64DataUrl({ dataUrl: block.url })
|
|
if (data) {
|
|
return {
|
|
inlineData: {
|
|
mimeType: data.mime_type,
|
|
data: data.data
|
|
}
|
|
}
|
|
} else {
|
|
return {
|
|
fileData: {
|
|
mimeType: block.mime_type ?? '',
|
|
fileUri: block.url
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (block.source_type === 'base64') {
|
|
return {
|
|
inlineData: {
|
|
mimeType: block.mime_type ?? '',
|
|
data: block.data
|
|
}
|
|
}
|
|
}
|
|
|
|
throw new Error(`Unsupported source type: ${block.source_type}`)
|
|
},
|
|
|
|
fromStandardAudioBlock(block): FileDataPart | InlineDataPart {
|
|
if (!isMultimodalModel) {
|
|
throw new Error('This model does not support audio')
|
|
}
|
|
if (block.source_type === 'url') {
|
|
const data = parseBase64DataUrl({ dataUrl: block.url })
|
|
if (data) {
|
|
return {
|
|
inlineData: {
|
|
mimeType: data.mime_type,
|
|
data: data.data
|
|
}
|
|
}
|
|
} else {
|
|
return {
|
|
fileData: {
|
|
mimeType: block.mime_type ?? '',
|
|
fileUri: block.url
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (block.source_type === 'base64') {
|
|
return {
|
|
inlineData: {
|
|
mimeType: block.mime_type ?? '',
|
|
data: block.data
|
|
}
|
|
}
|
|
}
|
|
|
|
throw new Error(`Unsupported source type: ${block.source_type}`)
|
|
},
|
|
|
|
fromStandardFileBlock(block): FileDataPart | InlineDataPart | TextPart {
|
|
if (!isMultimodalModel) {
|
|
throw new Error('This model does not support files')
|
|
}
|
|
if (block.source_type === 'text') {
|
|
return {
|
|
text: block.text
|
|
}
|
|
}
|
|
if (block.source_type === 'url') {
|
|
const data = parseBase64DataUrl({ dataUrl: block.url })
|
|
if (data) {
|
|
return {
|
|
inlineData: {
|
|
mimeType: data.mime_type,
|
|
data: data.data
|
|
}
|
|
}
|
|
} else {
|
|
return {
|
|
fileData: {
|
|
mimeType: block.mime_type ?? '',
|
|
fileUri: block.url
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (block.source_type === 'base64') {
|
|
return {
|
|
inlineData: {
|
|
mimeType: block.mime_type ?? '',
|
|
data: block.data
|
|
}
|
|
}
|
|
}
|
|
throw new Error(`Unsupported source type: ${block.source_type}`)
|
|
}
|
|
}
|
|
return standardContentBlockConverter
|
|
}
|
|
|
|
function _convertLangChainContentToPart(content: MessageContentComplex, isMultimodalModel: boolean): Part | undefined {
|
|
if (isDataContentBlock(content)) {
|
|
return convertToProviderContentBlock(content, _getStandardContentBlockConverter(isMultimodalModel))
|
|
}
|
|
|
|
if (content.type === 'text') {
|
|
return { text: content.text }
|
|
} else if (content.type === 'executableCode') {
|
|
return { executableCode: content.executableCode }
|
|
} else if (content.type === 'codeExecutionResult') {
|
|
return { codeExecutionResult: content.codeExecutionResult }
|
|
} else if (content.type === 'image_url') {
|
|
if (!isMultimodalModel) {
|
|
throw new Error(`This model does not support images`)
|
|
}
|
|
let source
|
|
if (typeof content.image_url === 'string') {
|
|
source = content.image_url
|
|
} else if (typeof content.image_url === 'object' && 'url' in content.image_url) {
|
|
source = content.image_url.url
|
|
} else {
|
|
throw new Error('Please provide image as base64 encoded data URL')
|
|
}
|
|
const [dm, data] = source.split(',')
|
|
if (!dm.startsWith('data:')) {
|
|
throw new Error('Please provide image as base64 encoded data URL')
|
|
}
|
|
|
|
const [mimeType, encoding] = dm.replace(/^data:/, '').split(';')
|
|
if (encoding !== 'base64') {
|
|
throw new Error('Please provide image as base64 encoded data URL')
|
|
}
|
|
|
|
return {
|
|
inlineData: {
|
|
data,
|
|
mimeType
|
|
}
|
|
}
|
|
} else if (content.type === 'media') {
|
|
return messageContentMedia(content)
|
|
} else if (content.type === 'tool_use') {
|
|
return {
|
|
functionCall: {
|
|
name: content.name,
|
|
args: content.input
|
|
}
|
|
}
|
|
} else if (
|
|
content.type?.includes('/') &&
|
|
// Ensure it's a single slash.
|
|
content.type.split('/').length === 2 &&
|
|
'data' in content &&
|
|
typeof content.data === 'string'
|
|
) {
|
|
return {
|
|
inlineData: {
|
|
mimeType: content.type,
|
|
data: content.data
|
|
}
|
|
}
|
|
} else if ('functionCall' in content) {
|
|
// No action needed here — function calls will be added later from message.tool_calls
|
|
return undefined
|
|
} else {
|
|
if ('type' in content) {
|
|
throw new Error(`Unknown content type ${content.type}`)
|
|
} else {
|
|
throw new Error(`Unknown content ${JSON.stringify(content)}`)
|
|
}
|
|
}
|
|
}
|
|
|
|
export function convertMessageContentToParts(message: BaseMessage, isMultimodalModel: boolean, previousMessages: BaseMessage[]): Part[] {
|
|
if (isToolMessage(message)) {
|
|
const messageName = message.name ?? inferToolNameFromPreviousMessages(message, previousMessages)
|
|
if (messageName === undefined) {
|
|
throw new Error(
|
|
`Google requires a tool name for each tool call response, and we could not infer a called tool name for ToolMessage "${message.id}" from your passed messages. Please populate a "name" field on that ToolMessage explicitly.`
|
|
)
|
|
}
|
|
|
|
const result = Array.isArray(message.content)
|
|
? (message.content.map((c) => _convertLangChainContentToPart(c, isMultimodalModel)).filter((p) => p !== undefined) as Part[])
|
|
: message.content
|
|
|
|
if (message.status === 'error') {
|
|
return [
|
|
{
|
|
functionResponse: {
|
|
name: messageName,
|
|
// The API expects an object with an `error` field if the function call fails.
|
|
// `error` must be a valid object (not a string or array), so we wrap `message.content` here
|
|
response: { error: { details: result } }
|
|
}
|
|
}
|
|
]
|
|
}
|
|
|
|
return [
|
|
{
|
|
functionResponse: {
|
|
name: messageName,
|
|
// again, can't have a string or array value for `response`, so we wrap it as an object here
|
|
response: { result }
|
|
}
|
|
}
|
|
]
|
|
}
|
|
|
|
let functionCalls: FunctionCallPart[] = []
|
|
const messageParts: Part[] = []
|
|
|
|
if (typeof message.content === 'string' && message.content) {
|
|
messageParts.push({ text: message.content })
|
|
}
|
|
|
|
if (Array.isArray(message.content)) {
|
|
messageParts.push(
|
|
...(message.content.map((c) => _convertLangChainContentToPart(c, isMultimodalModel)).filter((p) => p !== undefined) as Part[])
|
|
)
|
|
}
|
|
|
|
if (isAIMessage(message) && message.tool_calls?.length) {
|
|
functionCalls = message.tool_calls.map((tc) => {
|
|
return {
|
|
functionCall: {
|
|
name: tc.name,
|
|
args: tc.args
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
return [...messageParts, ...functionCalls]
|
|
}
|
|
|
|
export function convertBaseMessagesToContent(
|
|
messages: BaseMessage[],
|
|
isMultimodalModel: boolean,
|
|
convertSystemMessageToHumanContent: boolean = false
|
|
) {
|
|
return messages.reduce<{
|
|
content: Content[]
|
|
mergeWithPreviousContent: boolean
|
|
}>(
|
|
(acc, message, index) => {
|
|
if (!isBaseMessage(message)) {
|
|
throw new Error('Unsupported message input')
|
|
}
|
|
const author = getMessageAuthor(message)
|
|
if (author === 'system' && index !== 0) {
|
|
throw new Error('System message should be the first one')
|
|
}
|
|
const role = convertAuthorToRole(author)
|
|
|
|
const prevContent = acc.content[acc.content.length]
|
|
if (!acc.mergeWithPreviousContent && prevContent && prevContent.role === role) {
|
|
throw new Error('Google Generative AI requires alternate messages between authors')
|
|
}
|
|
|
|
const parts = convertMessageContentToParts(message, isMultimodalModel, messages.slice(0, index))
|
|
|
|
if (acc.mergeWithPreviousContent) {
|
|
const prevContent = acc.content[acc.content.length - 1]
|
|
if (!prevContent) {
|
|
throw new Error('There was a problem parsing your system message. Please try a prompt without one.')
|
|
}
|
|
prevContent.parts.push(...parts)
|
|
|
|
return {
|
|
mergeWithPreviousContent: false,
|
|
content: acc.content
|
|
}
|
|
}
|
|
let actualRole = role
|
|
if (actualRole === 'function' || (actualRole === 'system' && !convertSystemMessageToHumanContent)) {
|
|
// GenerativeAI API will throw an error if the role is not "user" or "model."
|
|
actualRole = 'user'
|
|
}
|
|
const content: Content = {
|
|
role: actualRole,
|
|
parts
|
|
}
|
|
return {
|
|
mergeWithPreviousContent: author === 'system' && !convertSystemMessageToHumanContent,
|
|
content: [...acc.content, content]
|
|
}
|
|
},
|
|
{ content: [], mergeWithPreviousContent: false }
|
|
).content
|
|
}
|
|
|
|
export function mapGenerateContentResultToChatResult(
|
|
response: EnhancedGenerateContentResponse,
|
|
extra?: {
|
|
usageMetadata: UsageMetadata | undefined
|
|
}
|
|
): ChatResult {
|
|
// if rejected or error, return empty generations with reason in filters
|
|
if (!response.candidates || response.candidates.length === 0 || !response.candidates[0]) {
|
|
return {
|
|
generations: [],
|
|
llmOutput: {
|
|
filters: response.promptFeedback
|
|
}
|
|
}
|
|
}
|
|
|
|
const functionCalls = response.functionCalls()
|
|
const [candidate] = response.candidates
|
|
const { content: candidateContent, ...generationInfo } = candidate
|
|
let content: MessageContent | undefined
|
|
|
|
if (Array.isArray(candidateContent?.parts) && candidateContent.parts.length === 1 && candidateContent.parts[0].text) {
|
|
content = candidateContent.parts[0].text
|
|
} else if (Array.isArray(candidateContent?.parts) && candidateContent.parts.length > 0) {
|
|
content = candidateContent.parts.map((p) => {
|
|
if ('text' in p) {
|
|
return {
|
|
type: 'text',
|
|
text: p.text
|
|
}
|
|
} else if ('executableCode' in p) {
|
|
return {
|
|
type: 'executableCode',
|
|
executableCode: p.executableCode
|
|
}
|
|
} else if ('codeExecutionResult' in p) {
|
|
return {
|
|
type: 'codeExecutionResult',
|
|
codeExecutionResult: p.codeExecutionResult
|
|
}
|
|
}
|
|
return p
|
|
})
|
|
} else {
|
|
// no content returned - likely due to abnormal stop reason, e.g. malformed function call
|
|
content = []
|
|
}
|
|
|
|
let text = ''
|
|
if (typeof content === 'string') {
|
|
text = content
|
|
} else if (Array.isArray(content) && content.length > 0) {
|
|
const block = content.find((b) => 'text' in b) as { text: string } | undefined
|
|
text = block?.text ?? text
|
|
}
|
|
|
|
const generation: ChatGeneration = {
|
|
text,
|
|
message: new AIMessage({
|
|
content: content ?? '',
|
|
tool_calls: functionCalls?.map((fc) => {
|
|
return {
|
|
...fc,
|
|
type: 'tool_call',
|
|
id: 'id' in fc && typeof fc.id === 'string' ? fc.id : uuidv4()
|
|
}
|
|
}),
|
|
additional_kwargs: {
|
|
...generationInfo
|
|
},
|
|
usage_metadata: extra?.usageMetadata
|
|
}),
|
|
generationInfo
|
|
}
|
|
|
|
return {
|
|
generations: [generation],
|
|
llmOutput: {
|
|
tokenUsage: {
|
|
promptTokens: extra?.usageMetadata?.input_tokens,
|
|
completionTokens: extra?.usageMetadata?.output_tokens,
|
|
totalTokens: extra?.usageMetadata?.total_tokens
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
export function convertResponseContentToChatGenerationChunk(
|
|
response: EnhancedGenerateContentResponse,
|
|
extra: {
|
|
usageMetadata?: UsageMetadata | undefined
|
|
index: number
|
|
}
|
|
): ChatGenerationChunk | null {
|
|
if (!response.candidates || response.candidates.length === 0) {
|
|
return null
|
|
}
|
|
const functionCalls = response.functionCalls()
|
|
const [candidate] = response.candidates
|
|
const { content: candidateContent, ...generationInfo } = candidate
|
|
let content: MessageContent | undefined
|
|
// Checks if some parts do not have text. If false, it means that the content is a string.
|
|
if (Array.isArray(candidateContent?.parts) && candidateContent.parts.every((p) => 'text' in p)) {
|
|
content = candidateContent.parts.map((p) => p.text).join('')
|
|
} else if (Array.isArray(candidateContent?.parts)) {
|
|
content = candidateContent.parts.map((p) => {
|
|
if ('text' in p) {
|
|
return {
|
|
type: 'text',
|
|
text: p.text
|
|
}
|
|
} else if ('executableCode' in p) {
|
|
return {
|
|
type: 'executableCode',
|
|
executableCode: p.executableCode
|
|
}
|
|
} else if ('codeExecutionResult' in p) {
|
|
return {
|
|
type: 'codeExecutionResult',
|
|
codeExecutionResult: p.codeExecutionResult
|
|
}
|
|
}
|
|
return p
|
|
})
|
|
} else {
|
|
// no content returned - likely due to abnormal stop reason, e.g. malformed function call
|
|
content = []
|
|
}
|
|
|
|
let text = ''
|
|
if (content && typeof content === 'string') {
|
|
text = content
|
|
} else if (Array.isArray(content)) {
|
|
const block = content.find((b) => 'text' in b) as { text: string } | undefined
|
|
text = block?.text ?? ''
|
|
}
|
|
|
|
const toolCallChunks: ToolCallChunk[] = []
|
|
if (functionCalls) {
|
|
toolCallChunks.push(
|
|
...functionCalls.map((fc) => ({
|
|
...fc,
|
|
args: JSON.stringify(fc.args),
|
|
index: extra.index,
|
|
type: 'tool_call_chunk' as const,
|
|
id: 'id' in fc && typeof fc.id === 'string' ? fc.id : uuidv4()
|
|
}))
|
|
)
|
|
}
|
|
|
|
return new ChatGenerationChunk({
|
|
text,
|
|
message: new AIMessageChunk({
|
|
content: content || '',
|
|
name: !candidateContent ? undefined : candidateContent.role,
|
|
tool_call_chunks: toolCallChunks,
|
|
// Each chunk can have unique "generationInfo", and merging strategy is unclear,
|
|
// so leave blank for now.
|
|
additional_kwargs: {},
|
|
usage_metadata: extra.usageMetadata
|
|
}),
|
|
generationInfo
|
|
})
|
|
}
|
|
|
|
export function convertToGenerativeAITools(tools: GoogleGenerativeAIToolType[]): GoogleGenerativeAIFunctionDeclarationsTool[] {
|
|
if (tools.every((tool) => 'functionDeclarations' in tool && Array.isArray(tool.functionDeclarations))) {
|
|
return tools as GoogleGenerativeAIFunctionDeclarationsTool[]
|
|
}
|
|
return [
|
|
{
|
|
functionDeclarations: tools.map((tool): GenerativeAIFunctionDeclaration => {
|
|
if (isLangChainTool(tool)) {
|
|
const jsonSchema = schemaToGenerativeAIParameters(tool.schema)
|
|
if (jsonSchema.type === 'object' && 'properties' in jsonSchema && Object.keys(jsonSchema.properties).length === 0) {
|
|
return {
|
|
name: tool.name,
|
|
description: tool.description
|
|
}
|
|
}
|
|
return {
|
|
name: tool.name,
|
|
description: tool.description,
|
|
parameters: jsonSchema
|
|
}
|
|
}
|
|
if (isOpenAITool(tool)) {
|
|
return {
|
|
name: tool.function.name,
|
|
description: tool.function.description ?? `A function available to call.`,
|
|
parameters: jsonSchemaToGeminiParameters(tool.function.parameters)
|
|
}
|
|
}
|
|
return tool as unknown as GenerativeAIFunctionDeclaration
|
|
})
|
|
}
|
|
]
|
|
}
|