add fix for illegal invocation
This commit is contained in:
parent
d4269d0b82
commit
76f689cb93
|
|
@ -2,9 +2,10 @@ import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/I
|
|||
import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Document } from 'langchain/document'
|
||||
import { Client } from '@opensearch-project/opensearch'
|
||||
import { Client, RequestParams } from '@opensearch-project/opensearch'
|
||||
import { flatten } from 'lodash'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { buildMetadataTerms } from './core'
|
||||
|
||||
class OpenSearchUpsert_VectorStores implements INode {
|
||||
label: string
|
||||
|
|
@ -95,9 +96,44 @@ class OpenSearchUpsert_VectorStores implements INode {
|
|||
|
||||
const vectorStore = await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, {
|
||||
client,
|
||||
indexName: indexName
|
||||
indexName
|
||||
})
|
||||
|
||||
vectorStore.similaritySearchVectorWithScore = async (
|
||||
query: number[],
|
||||
k: number,
|
||||
filter?: object | undefined
|
||||
): Promise<[Document, number][]> => {
|
||||
const search: RequestParams.Search = {
|
||||
index: indexName,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: { bool: { must: buildMetadataTerms(filter) } },
|
||||
must: [
|
||||
{
|
||||
knn: {
|
||||
embedding: { vector: query, k }
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
size: k
|
||||
}
|
||||
}
|
||||
|
||||
const { body } = await client.search(search)
|
||||
|
||||
return body.hits.hits.map((hit: any) => [
|
||||
new Document({
|
||||
pageContent: hit._source.text,
|
||||
metadata: hit._source.metadata
|
||||
}),
|
||||
hit._score
|
||||
])
|
||||
}
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
|
|
@ -1,8 +1,10 @@
|
|||
import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Client } from '@opensearch-project/opensearch'
|
||||
import { Document } from 'langchain/document'
|
||||
import { Client, RequestParams } from '@opensearch-project/opensearch'
|
||||
import { getBaseClasses } from '../../../src/utils'
|
||||
import { buildMetadataTerms } from './core'
|
||||
|
||||
class OpenSearch_Existing_VectorStores implements INode {
|
||||
label: string
|
||||
|
|
@ -42,6 +44,13 @@ class OpenSearch_Existing_VectorStores implements INode {
|
|||
name: 'indexName',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'OpenSearch Metadata Filter',
|
||||
name: 'openSearchMetadataFilter',
|
||||
type: 'json',
|
||||
optional: true,
|
||||
additionalParams: true
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
|
|
@ -73,6 +82,7 @@ class OpenSearch_Existing_VectorStores implements INode {
|
|||
const output = nodeData.outputs?.output as string
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseFloat(topK) : 4
|
||||
const openSearchMetadataFilter = nodeData.inputs?.openSearchMetadataFilter
|
||||
|
||||
const client = new Client({
|
||||
nodes: [opensearchURL]
|
||||
|
|
@ -83,6 +93,46 @@ class OpenSearch_Existing_VectorStores implements INode {
|
|||
indexName
|
||||
})
|
||||
|
||||
vectorStore.similaritySearchVectorWithScore = async (
|
||||
query: number[],
|
||||
k: number,
|
||||
filter?: object | undefined
|
||||
): Promise<[Document, number][]> => {
|
||||
if (openSearchMetadataFilter) {
|
||||
const metadatafilter =
|
||||
typeof openSearchMetadataFilter === 'object' ? openSearchMetadataFilter : JSON.parse(openSearchMetadataFilter)
|
||||
filter = metadatafilter
|
||||
}
|
||||
const search: RequestParams.Search = {
|
||||
index: indexName,
|
||||
body: {
|
||||
query: {
|
||||
bool: {
|
||||
filter: { bool: { must: buildMetadataTerms(filter) } },
|
||||
must: [
|
||||
{
|
||||
knn: {
|
||||
embedding: { vector: query, k }
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
size: k
|
||||
}
|
||||
}
|
||||
|
||||
const { body } = await client.search(search)
|
||||
|
||||
return body.hits.hits.map((hit: any) => [
|
||||
new Document({
|
||||
pageContent: hit._source.text,
|
||||
metadata: hit._source.metadata
|
||||
}),
|
||||
hit._score
|
||||
])
|
||||
}
|
||||
|
||||
if (output === 'retriever') {
|
||||
const retriever = vectorStore.asRetriever(k)
|
||||
return retriever
|
||||
|
|
@ -0,0 +1,8 @@
|
|||
export const buildMetadataTerms = (filter?: object): { term: Record<string, unknown> }[] => {
|
||||
if (filter == null) return []
|
||||
const result = []
|
||||
for (const [key, value] of Object.entries(filter)) {
|
||||
result.push({ term: { [`metadata.${key}`]: value } })
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
Before Width: | Height: | Size: 5.1 KiB After Width: | Height: | Size: 5.1 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 5.1 KiB |
Loading…
Reference in New Issue