Flowise/packages/components/nodes/vectorstores/OpenSearch/OpenSearch_Upsert.ts

149 lines
4.8 KiB
TypeScript

import { INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
import { OpenSearchVectorStore } from 'langchain/vectorstores/opensearch'
import { Embeddings } from 'langchain/embeddings/base'
import { Document } from 'langchain/document'
import { Client, RequestParams } from '@opensearch-project/opensearch'
import { flatten } from 'lodash'
import { getBaseClasses } from '../../../src/utils'
import { buildMetadataTerms } from './core'
class OpenSearchUpsert_VectorStores implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'OpenSearch Upsert Document'
this.name = 'openSearchUpsertDocument'
this.version = 1.0
this.type = 'OpenSearch'
this.icon = 'opensearch.png'
this.category = 'Vector Stores'
this.description = 'Upsert documents to OpenSearch'
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
this.inputs = [
{
label: 'Document',
name: 'document',
type: 'Document',
list: true
},
{
label: 'Embeddings',
name: 'embeddings',
type: 'Embeddings'
},
{
label: 'OpenSearch URL',
name: 'opensearchURL',
type: 'string',
placeholder: 'http://127.0.0.1:9200'
},
{
label: 'Index Name',
name: 'indexName',
type: 'string'
},
{
label: 'Top K',
name: 'topK',
description: 'Number of top results to fetch. Default to 4',
placeholder: '4',
type: 'number',
additionalParams: true,
optional: true
}
]
this.outputs = [
{
label: 'OpenSearch Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'OpenSearch Vector Store',
name: 'vectorStore',
baseClasses: [this.type, ...getBaseClasses(OpenSearchVectorStore)]
}
]
}
async init(nodeData: INodeData): Promise<any> {
const docs = nodeData.inputs?.document as Document[]
const embeddings = nodeData.inputs?.embeddings as Embeddings
const opensearchURL = nodeData.inputs?.opensearchURL as string
const indexName = nodeData.inputs?.indexName as string
const output = nodeData.outputs?.output as string
const topK = nodeData.inputs?.topK as string
const k = topK ? parseFloat(topK) : 4
const flattenDocs = docs && docs.length ? flatten(docs) : []
const finalDocs = []
for (let i = 0; i < flattenDocs.length; i += 1) {
finalDocs.push(new Document(flattenDocs[i]))
}
const client = new Client({
nodes: [opensearchURL]
})
const vectorStore = await OpenSearchVectorStore.fromDocuments(finalDocs, embeddings, {
client,
indexName
})
vectorStore.similaritySearchVectorWithScore = async (
query: number[],
k: number,
filter?: object | undefined
): Promise<[Document, number][]> => {
const search: RequestParams.Search = {
index: indexName,
body: {
query: {
bool: {
filter: { bool: { must: buildMetadataTerms(filter) } },
must: [
{
knn: {
embedding: { vector: query, k }
}
}
]
}
},
size: k
}
}
const { body } = await client.search(search)
return body.hits.hits.map((hit: any) => [
new Document({
pageContent: hit._source.text,
metadata: hit._source.metadata
}),
hit._score
])
}
if (output === 'retriever') {
const retriever = vectorStore.asRetriever(k)
return retriever
} else if (output === 'vectorStore') {
;(vectorStore as any).k = k
return vectorStore
}
return vectorStore
}
}
module.exports = { nodeClass: OpenSearchUpsert_VectorStores }