Support for ElasticSearch as a vector store
This commit is contained in:
parent
ef5bc230b9
commit
f108c62acf
|
|
@ -0,0 +1,31 @@
|
|||
import { INodeParams, INodeCredential } from '../src/Interface'
|
||||
|
||||
class ElectricsearchAPI implements INodeCredential {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Elasticsearch API'
|
||||
this.name = 'elasticsearchApi'
|
||||
this.version = 1.0
|
||||
this.description =
|
||||
'Refer to <a target="_blank" href="https://www.elastic.co/guide/en/kibana/current/api-keys.html">official guide</a> on how to get an API Key from ElasticSearch'
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Elasticsearch Endpoint',
|
||||
name: 'endpoint',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Elasticsearch API ID',
|
||||
name: 'apiKey',
|
||||
type: 'password'
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { credClass: ElectricsearchAPI }
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
import { INodeParams, INodeCredential } from '../src/Interface'
|
||||
|
||||
class ElasticSearchUserPassword implements INodeCredential {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
inputs: INodeParams[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'ElasticSearch User Password'
|
||||
this.name = 'elasticSearchUserPassword'
|
||||
this.version = 1.0
|
||||
this.description =
|
||||
'Refer to <a target="_blank" href="https://www.elastic.co/guide/en/kibana/current/tutorial-secure-access-to-kibana.html">official guide</a> on how to get User Password from ElasticSearch'
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'ElasticSearch User',
|
||||
name: 'elasticSearchUser',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'ElasticSearch Password',
|
||||
name: 'elasticSearchPassword',
|
||||
type: 'password'
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { credClass: ElasticSearchUserPassword }
|
||||
|
|
@ -0,0 +1,111 @@
|
|||
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src'
|
||||
|
||||
import { Client, ClientOptions } from '@elastic/elasticsearch'
|
||||
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
|
||||
|
||||
class ElasicsearchExisting_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
credential: INodeParams
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Elasticsearch Load Existing Index'
|
||||
this.name = 'ElasticsearchIndex'
|
||||
this.version = 1.0
|
||||
this.type = 'Elasticsearch'
|
||||
this.icon = 'elasticsearch.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Load existing index from Elasticsearch (i.e: Document has been upserted)'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.credential = {
|
||||
label: 'Connect Credential',
|
||||
name: 'credential',
|
||||
type: 'credential',
|
||||
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
|
||||
}
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'Index Name',
|
||||
name: 'indexName',
|
||||
placeholder: '<INDEX_NAME>',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Elasticsearch Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Elasticsearch Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
||||
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
|
||||
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
||||
const indexName = nodeData.inputs?.indexName as string
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
|
||||
const k = topK ? parseFloat(topK) : 4
|
||||
const output = nodeData.outputs?.output as string
|
||||
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('EndPoint:: ' + endPoint + ', APIKey:: ' + apiKey + ', Index:: ' + indexName)
|
||||
|
||||
const elasticSearchClientOptions: ClientOptions = {
|
||||
node: endPoint,
|
||||
auth: {
|
||||
apiKey: apiKey
|
||||
}
|
||||
}
|
||||
|
||||
const elasticSearchClientArgs: ElasticClientArgs = {
|
||||
client: new Client(elasticSearchClientOptions),
|
||||
indexName: indexName
|
||||
}
|
||||
|
||||
const vectorStore = await ElasticVectorSearch.fromExistingIndex(embeddings, elasticSearchClientArgs)
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('vectorStore ::' + vectorStore._vectorstoreType())
|
||||
if (output === 'retriever') {
|
||||
return vectorStore.asRetriever(k)
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: ElasicsearchExisting_VectorStores }
|
||||
|
|
@ -0,0 +1,165 @@
|
|||
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
||||
import { Embeddings } from 'langchain/embeddings/base'
|
||||
import { Document } from 'langchain/document'
|
||||
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src'
|
||||
|
||||
import { Client, ClientOptions } from '@elastic/elasticsearch'
|
||||
import { ElasticClientArgs, ElasticVectorSearch } from 'langchain/vectorstores/elasticsearch'
|
||||
import { flatten } from 'lodash'
|
||||
|
||||
class ElasicsearchUpsert_VectorStores implements INode {
|
||||
label: string
|
||||
name: string
|
||||
version: number
|
||||
description: string
|
||||
type: string
|
||||
icon: string
|
||||
category: string
|
||||
baseClasses: string[]
|
||||
inputs: INodeParams[]
|
||||
credential: INodeParams
|
||||
outputs: INodeOutputsValue[]
|
||||
|
||||
constructor() {
|
||||
this.label = 'Elasticsearch Upsert Document'
|
||||
this.name = 'ElasticsearchUpsert'
|
||||
this.version = 1.0
|
||||
this.type = 'Elasticsearch'
|
||||
this.icon = 'elasticsearch.png'
|
||||
this.category = 'Vector Stores'
|
||||
this.description = 'Upsert documents to Elasticsearch'
|
||||
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
||||
this.credential = {
|
||||
label: 'Connect Credential',
|
||||
name: 'credential',
|
||||
type: 'credential',
|
||||
credentialNames: ['elasticsearchApi', 'elasticSearchUserPassword']
|
||||
}
|
||||
this.inputs = [
|
||||
{
|
||||
label: 'Document',
|
||||
name: 'document',
|
||||
type: 'Document',
|
||||
list: true
|
||||
},
|
||||
{
|
||||
label: 'Embeddings',
|
||||
name: 'embeddings',
|
||||
type: 'Embeddings'
|
||||
},
|
||||
{
|
||||
label: 'Index Name',
|
||||
name: 'indexName',
|
||||
placeholder: '<INDEX_NAME>',
|
||||
type: 'string'
|
||||
},
|
||||
{
|
||||
label: 'Top K',
|
||||
name: 'topK',
|
||||
description: 'Number of top results to fetch. Default to 4',
|
||||
placeholder: '4',
|
||||
type: 'number',
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
label: 'Similarity',
|
||||
name: 'similarity',
|
||||
description: 'Similarity measure used in Elasticsearch.',
|
||||
type: 'options',
|
||||
default: 'l2_norm',
|
||||
options: [
|
||||
{
|
||||
label: 'l2_norm',
|
||||
name: 'l2_norm'
|
||||
},
|
||||
{
|
||||
label: 'dot_product',
|
||||
name: 'dot_product'
|
||||
},
|
||||
{
|
||||
label: 'cosine',
|
||||
name: 'cosine'
|
||||
}
|
||||
],
|
||||
additionalParams: true,
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
this.outputs = [
|
||||
{
|
||||
label: 'Elasticsearch Retriever',
|
||||
name: 'retriever',
|
||||
baseClasses: this.baseClasses
|
||||
},
|
||||
{
|
||||
label: 'Elasticsearch Vector Store',
|
||||
name: 'vectorStore',
|
||||
baseClasses: [this.type, ...getBaseClasses(ElasticVectorSearch)]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
||||
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
||||
const endPoint = getCredentialParam('endpoint', credentialData, nodeData)
|
||||
const apiKey = getCredentialParam('apiKey', credentialData, nodeData)
|
||||
const docs = nodeData.inputs?.document as Document[]
|
||||
const indexName = nodeData.inputs?.indexName as string
|
||||
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
||||
const topK = nodeData.inputs?.topK as string
|
||||
const k = topK ? parseFloat(topK) : 4
|
||||
const output = nodeData.outputs?.output as string
|
||||
const similarityMeasure = nodeData.inputs?.similarityMeasure as string
|
||||
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('EndPoint:: ' + endPoint + ', APIKey:: ' + apiKey + ', Index:: ' + indexName)
|
||||
|
||||
const elasticSearchClientOptions: ClientOptions = {
|
||||
node: endPoint,
|
||||
auth: {
|
||||
apiKey: apiKey
|
||||
}
|
||||
}
|
||||
let vectorSearchOptions = {}
|
||||
switch (similarityMeasure) {
|
||||
case 'dot_product':
|
||||
vectorSearchOptions = {
|
||||
similarity: 'dot_product'
|
||||
}
|
||||
break
|
||||
case 'cosine':
|
||||
vectorSearchOptions = {
|
||||
similarity: 'cosine'
|
||||
}
|
||||
break
|
||||
default:
|
||||
vectorSearchOptions = {
|
||||
similarity: 'l2_norm'
|
||||
}
|
||||
}
|
||||
const elasticSearchClientArgs: ElasticClientArgs = {
|
||||
client: new Client(elasticSearchClientOptions),
|
||||
indexName: indexName,
|
||||
vectorSearchOptions: vectorSearchOptions
|
||||
}
|
||||
|
||||
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
||||
const finalDocs = []
|
||||
for (let i = 0; i < flattenDocs.length; i += 1) {
|
||||
finalDocs.push(new Document(flattenDocs[i]))
|
||||
}
|
||||
|
||||
const vectorStore = await ElasticVectorSearch.fromDocuments(finalDocs, embeddings, elasticSearchClientArgs)
|
||||
|
||||
if (output === 'retriever') {
|
||||
return vectorStore.asRetriever(k)
|
||||
} else if (output === 'vectorStore') {
|
||||
;(vectorStore as any).k = k
|
||||
return vectorStore
|
||||
}
|
||||
return vectorStore
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { nodeClass: ElasicsearchUpsert_VectorStores }
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 3.6 KiB |
|
|
@ -19,6 +19,7 @@
|
|||
"@aws-sdk/client-dynamodb": "^3.360.0",
|
||||
"@dqbd/tiktoken": "^1.0.7",
|
||||
"@getzep/zep-js": "^0.6.3",
|
||||
"@elastic/elasticsearch": "^8.9.0",
|
||||
"@google-ai/generativelanguage": "^0.2.1",
|
||||
"@huggingface/inference": "^2.6.1",
|
||||
"@notionhq/client": "^2.2.8",
|
||||
|
|
|
|||
Loading…
Reference in New Issue