Flowise/packages/components/nodes/retrievers/SimilarityThresholdRetriever/SimilarityThresholdRetrieve...

119 lines
4.1 KiB
TypeScript

import { VectorStore } from 'langchain/vectorstores/base'
import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface'
import { handleEscapeCharacters } from '../../../src'
import { ScoreThresholdRetriever } from 'langchain/retrievers/score_threshold'
class SimilarityThresholdRetriever_Retrievers implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]
constructor() {
this.label = 'Similarity Score Threshold Retriever'
this.name = 'similarityThresholdRetriever'
this.version = 2.0
this.type = 'SimilarityThresholdRetriever'
this.icon = 'similaritythreshold.svg'
this.category = 'Retrievers'
this.description = 'Return results based on the minimum similarity percentage'
this.baseClasses = [this.type, 'BaseRetriever']
this.inputs = [
{
label: 'Vector Store',
name: 'vectorStore',
type: 'VectorStore'
},
{
label: 'Query',
name: 'query',
type: 'string',
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
optional: true,
acceptVariable: true
},
{
label: 'Minimum Similarity Score (%)',
name: 'minSimilarityScore',
description: 'Finds results with at least this similarity score',
type: 'number',
default: 80,
step: 1
},
{
label: 'Max K',
name: 'maxK',
description: `The maximum number of results to fetch`,
type: 'number',
default: 20,
step: 1,
additionalParams: true
},
{
label: 'K Increment',
name: 'kIncrement',
description: `How much to increase K by each time. It'll fetch N results, then N + kIncrement, then N + kIncrement * 2, etc.`,
type: 'number',
default: 2,
step: 1,
additionalParams: true
}
]
this.outputs = [
{
label: 'Similarity Threshold Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Document',
name: 'document',
baseClasses: ['Document']
},
{
label: 'Text',
name: 'text',
baseClasses: ['string', 'json']
}
]
}
async init(nodeData: INodeData, input: string): Promise<any> {
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
const minSimilarityScore = nodeData.inputs?.minSimilarityScore as number
const query = nodeData.inputs?.query as string
const maxK = nodeData.inputs?.maxK as string
const kIncrement = nodeData.inputs?.kIncrement as string
const output = nodeData.outputs?.output as string
const retriever = ScoreThresholdRetriever.fromVectorStore(vectorStore, {
minSimilarityScore: minSimilarityScore ? minSimilarityScore / 100 : 0.9,
maxK: maxK ? parseInt(maxK, 10) : 100,
kIncrement: kIncrement ? parseInt(kIncrement, 10) : 2
})
if (output === 'retriever') return retriever
else if (output === 'document') return await retriever.getRelevantDocuments(query ? query : input)
else if (output === 'text') {
let finaltext = ''
const docs = await retriever.getRelevantDocuments(query ? query : input)
for (const doc of docs) finaltext += `${doc.pageContent}\n`
return handleEscapeCharacters(finaltext, false)
}
return retriever
}
}
module.exports = { nodeClass: SimilarityThresholdRetriever_Retrievers }