195 lines
7.0 KiB
TypeScript
195 lines
7.0 KiB
TypeScript
import { flatten } from 'lodash'
|
|
import { MongoClient } from 'mongodb'
|
|
import { MongoDBAtlasVectorSearch } from 'langchain/vectorstores/mongodb_atlas'
|
|
import { Embeddings } from 'langchain/embeddings/base'
|
|
import { Document } from 'langchain/document'
|
|
import { ICommonObject, INode, INodeData, INodeOutputsValue, INodeParams } from '../../../src/Interface'
|
|
import { getBaseClasses, getCredentialData, getCredentialParam } from '../../../src/utils'
|
|
|
|
class MongoDBAtlas_VectorStores implements INode {
|
|
label: string
|
|
name: string
|
|
version: number
|
|
description: string
|
|
type: string
|
|
icon: string
|
|
category: string
|
|
badge: string
|
|
baseClasses: string[]
|
|
inputs: INodeParams[]
|
|
credential: INodeParams
|
|
outputs: INodeOutputsValue[]
|
|
|
|
constructor() {
|
|
this.label = 'MongoDB Atlas'
|
|
this.name = 'mongoDBAtlas'
|
|
this.version = 1.0
|
|
this.description = `Upsert embedded data and perform similarity search upon query using MongoDB Atlas, a managed cloud mongodb database`
|
|
this.type = 'MongoDB Atlas'
|
|
this.icon = 'mongodb.png'
|
|
this.category = 'Vector Stores'
|
|
this.baseClasses = [this.type, 'VectorStoreRetriever', 'BaseRetriever']
|
|
this.badge = 'NEW'
|
|
this.credential = {
|
|
label: 'Connect Credential',
|
|
name: 'credential',
|
|
type: 'credential',
|
|
credentialNames: ['mongoDBUrlApi']
|
|
}
|
|
this.inputs = [
|
|
{
|
|
label: 'Document',
|
|
name: 'document',
|
|
type: 'Document',
|
|
list: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embeddings',
|
|
name: 'embeddings',
|
|
type: 'Embeddings'
|
|
},
|
|
{
|
|
label: 'Database',
|
|
name: 'databaseName',
|
|
placeholder: '<DB_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Collection Name',
|
|
name: 'collectionName',
|
|
placeholder: '<COLLECTION_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Index Name',
|
|
name: 'indexName',
|
|
placeholder: '<VECTOR_INDEX_NAME>',
|
|
type: 'string'
|
|
},
|
|
{
|
|
label: 'Content Field',
|
|
name: 'textKey',
|
|
description: 'Name of the field (column) that contains the actual content',
|
|
type: 'string',
|
|
default: 'text',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Embedded Field',
|
|
name: 'embeddingKey',
|
|
description: 'Name of the field (column) that contains the Embedding',
|
|
type: 'string',
|
|
default: 'embedding',
|
|
additionalParams: true,
|
|
optional: true
|
|
},
|
|
{
|
|
label: 'Top K',
|
|
name: 'topK',
|
|
description: 'Number of top results to fetch. Default to 4',
|
|
placeholder: '4',
|
|
type: 'number',
|
|
additionalParams: true,
|
|
optional: true
|
|
}
|
|
]
|
|
this.outputs = [
|
|
{
|
|
label: 'MongoDB Retriever',
|
|
name: 'retriever',
|
|
baseClasses: this.baseClasses
|
|
},
|
|
{
|
|
label: 'MongoDB Vector Store',
|
|
name: 'vectorStore',
|
|
baseClasses: [this.type, ...getBaseClasses(MongoDBAtlasVectorSearch)]
|
|
}
|
|
]
|
|
}
|
|
|
|
//@ts-ignore
|
|
vectorStoreMethods = {
|
|
async upsert(nodeData: INodeData, options: ICommonObject): Promise<void> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const databaseName = nodeData.inputs?.databaseName as string
|
|
const collectionName = nodeData.inputs?.collectionName as string
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
let textKey = nodeData.inputs?.textKey as string
|
|
let embeddingKey = nodeData.inputs?.embeddingKey as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
|
|
let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData)
|
|
|
|
const docs = nodeData.inputs?.document as Document[]
|
|
|
|
const flattenDocs = docs && docs.length ? flatten(docs) : []
|
|
const finalDocs = []
|
|
for (let i = 0; i < flattenDocs.length; i += 1) {
|
|
if (flattenDocs[i] && flattenDocs[i].pageContent) {
|
|
const document = new Document(flattenDocs[i])
|
|
finalDocs.push(document)
|
|
}
|
|
}
|
|
|
|
const mongoClient = new MongoClient(mongoDBConnectUrl)
|
|
const collection = mongoClient.db(databaseName).collection(collectionName)
|
|
|
|
if (!textKey || textKey === '') textKey = 'text'
|
|
if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding'
|
|
|
|
const mongoDBAtlasVectorSearch = new MongoDBAtlasVectorSearch(embeddings, {
|
|
collection,
|
|
indexName,
|
|
textKey,
|
|
embeddingKey
|
|
})
|
|
|
|
try {
|
|
await mongoDBAtlasVectorSearch.addDocuments(finalDocs)
|
|
} catch (e) {
|
|
throw new Error(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
async init(nodeData: INodeData, _: string, options: ICommonObject): Promise<any> {
|
|
const credentialData = await getCredentialData(nodeData.credential ?? '', options)
|
|
const databaseName = nodeData.inputs?.databaseName as string
|
|
const collectionName = nodeData.inputs?.collectionName as string
|
|
const indexName = nodeData.inputs?.indexName as string
|
|
let textKey = nodeData.inputs?.textKey as string
|
|
let embeddingKey = nodeData.inputs?.embeddingKey as string
|
|
const embeddings = nodeData.inputs?.embeddings as Embeddings
|
|
const topK = nodeData.inputs?.topK as string
|
|
const k = topK ? parseFloat(topK) : 4
|
|
const output = nodeData.outputs?.output as string
|
|
|
|
let mongoDBConnectUrl = getCredentialParam('mongoDBConnectUrl', credentialData, nodeData)
|
|
|
|
const mongoClient = new MongoClient(mongoDBConnectUrl)
|
|
const collection = mongoClient.db(databaseName).collection(collectionName)
|
|
|
|
if (!textKey || textKey === '') textKey = 'text'
|
|
if (!embeddingKey || embeddingKey === '') embeddingKey = 'embedding'
|
|
|
|
const vectorStore = new MongoDBAtlasVectorSearch(embeddings, {
|
|
collection,
|
|
indexName,
|
|
textKey,
|
|
embeddingKey
|
|
})
|
|
|
|
if (output === 'retriever') {
|
|
return vectorStore.asRetriever(k)
|
|
} else if (output === 'vectorStore') {
|
|
;(vectorStore as any).k = k
|
|
return vectorStore
|
|
}
|
|
return vectorStore
|
|
}
|
|
}
|
|
|
|
module.exports = { nodeClass: MongoDBAtlas_VectorStores }
|